

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/prismdoc/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/prismdoc/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

索引

Download and Setup Prism

Learn what’s included in Prism including the documentation, code samples, and libraries. Additionally find out where to get the library and sample source code and the library NuGet packages.

For a list of the new features, bug fixes, and API changes, see the release notes [https://github.com/PrismLibrary/Prism/wiki].

Download and Setup the Prism Source Code

This section describes how to install Prism. It involves the following three steps:

	Install system requirements.

	Download and extract the Prism source code and documentation.

	Compile and run the samples.

Step 1: Install System Requirements

Prism was designed to run on the Microsoft Windows 8 desktop, Microsoft Windows 7, Windows Vista, or Windows Server 2008 operating system. WPF applications built using this guidance require the .NET Framework 4.5.

Before you can use the Prism Library, the following must be installed:

	Microsoft .NET Framework 4.5 or greater.

	Microsoft Visual Studio 2012 or greater.

	Xamarin for Visual Studio 3.11.1537 or greater.

Step 2: Download and Extract the Prism Source Code and Documentation

The easiest way to download Prism source code, and documentation is to fork the Prism repository [https://github.com/prismlibrary/prism].

You can download the source code, documentation, and samples for the Prism library from the following links:

	Prism Source Code and Documentation [https://github.com/PrismLibrary/Prism/releases]

	Samples
	WPF [https://github.com/PrismLibrary/Prism-Samples-Wpf]

	Universal Windows Platform [https://github.com/PrismLibrary/Prism-Samples-Windows]

	Xamarin.Forms [https://github.com/PrismLibrary/Prism-Samples-Forms]

Optionally you can add the Prism assemblies directly to your projects by using the NuGet packages.

Step 3: Compile and Run Samples

All samples use the Prism NuGet references so you can compile and run each solution directly.

Adding Prism Library Source Projects to Solutions

As part of shipping the Prism Library as NuGet packages, the Prism Library projects were removed from the solutions of all sample projects. If you are a developer accustomed to stepping through the Prism Library code as you build your application, there are a couple of options:

	Add the Prism Library Projects back in. To do this, right-click the solution, point to Add, and then click Existing project. Select the Prism Library projects. Then, to prevent inadvertently building these, click Configuration Manager on the Build menu, and then clear the Build check box for all Prism Library projects in both the debug and release configurations.

	Set a breakpoint and step in. Set a break point in your application’s bootstrapper, and then step in to a method within the base class (F11 is the typical C# keyboard shortcut for this). You may be asked to locate the Prism Library source code, but often, the full program database (PDB) file is available and the file will simply open. You may set breakpoints in any Prism Library project by opening the file and setting the breakpoint.

NuGet Packages

Core Packages

These are the base packages for each platform, together with the Prism’s Core assembly as a cross-platform PCL.

Platform	Assembly	Package	Version
——–	——–	——-	——-
PCL	Prism.dll	Prism.Core [https://www.nuget.org/packages/Prism.Core/]	[image: Prism.Core badge] [https://www.nuget.org/packages/Prism.Core/]
WPF	Prism.Wpf.dll	Prism.Wpf [https://www.nuget.org/packages/Prism.Wpf/]	[image: Prism.WPF badge] [https://www.nuget.org/packages/Prism.Wpf/]
Xamarin.Forms	Prism.Forms.dll	Prism.Forms [https://www.nuget.org/packages/Prism.Forms/]	[image: Prism.Forms badge] [https://www.nuget.org/packages/Prism.Forms/]
Windows 10 UWP	Prism.Windows.dll	Prism.Windows [https://www.nuget.org/packages/Prism.Windows/]	[image: Prism.Windows badge] [https://www.nuget.org/packages/Prism.Windows/]

Container-specific packages

Each supported IoC container has its own package assisting in the setup and usage of that container together with Prism. The assembly is named using this convention: Prism.Container.Platform.dll, e.g. Prism.Unity.Wpf.dll.

Following matrix shows the platform specific support currently available.

| Package | Version | WPF | Win10 UWP | Xamarin.Forms |
|————————|————|:—:|:—:|:—:|
| Prism.Autofac [https://www.nuget.org/packages/Prism.Autofac/] ()

 Prism Assembly Versioning

Prism Assembly Versioning

Assembly versioning is an important, and often ignored, aspect of a project. There are three assembly attributes defined in the AssemblyInfo.cs file of each project of Prism. These attribute are the AssemblyAttribute, the AssemblyFileAttribute, and the AssemblyInformationAttribute.

[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]
[assembly: AssemblyInformationalVersion("1.0.0.0")]

By convention, the four parts of each version are referred to as the Major Version, Minor Version, Build, and Revision.

This document decribes how Prism unitilizes each of these attributes to version its assemblies, and what numbering convention each attribute follows.

AssemblyVersion

The AssemblyVersion is used by the CLR to bind to strongly named assemblies. It is stored in the AssemblyDef manifest metadata table of the built assembly, and in the AssemblyRef table of any assembly that references it. When you reference a strongly named assembly, which Prism is strongly named, you are tightly bound to that specific AssemblyVersion of that assembly.

For example; assume you referenced version 1.0.0.0 of an assembly and then built and released your application to your users. Then, an updated version of 1.0.2.0 which fixes a critical bug became available, and was dropped into the executing folder (possibly GAC) of your application. That binding would fail and your application would crash. You would have to reference the new 1.0.2.0 version and rebuild and redeploy your application.

To avoid this, Prism has adopted the following format for the AssemblyVersion:

[Major].[Minor]

We will only update the AssemblyVersion when there is a major or minor change in the functionality of the assembly. We will not update the AssemblyVersion when releasing bug fixes and updates.

AssemblyFileVersion

The AssemblyFileVersion is intended to uniquely identify the build of an assembly. When patches and bug fixes are released, the AssemblyFileVersion is incremented to reflect those changes.

Prism has standardized on the following format for AssemblyFileVersion:

[Major].[Minor].[Revision]

This will allow Prism to release bug fixes and updates without having to increment the AssemblyVersion. This enables you as a developer to patch your applications without having to re-reference Prism assemblies or recompile and re-release your application.

AssemblyInformationVersion

The AssemblyInformationalVersion is intended to allow coherent versioning of the entire product, which may consist of many assemblies that are independently versioned, and potentially developed by disparate teams. The AssemblyInformationAttribute is used to communicate to the community, or customers, what version of Prism is the current release.

For example; Assume we release a product with an AssemblyInformationAttribute of 2.0.0.0. This product may be made up of many assemblies with their AssemblyVersion ranging from 1.0.0.0 to 1.9.9.9. Although the individual assemblies are not versioned at 2.0.0.0, the product itself is a 2.0 release.

The AssemblyInformationAttribute lets us market Prism as an overall product made up of several related assemblies that have different assembly versions.

Prism has standardize on the following format for AssemblyInformationVersioning:

[Major].[Minor].[Revision]

Note: This is the version that the Prism NuGet packages will match

 Using the DependencyService with Prism

Using the DependencyService with Prism

Xamarin.Forms includes a DependencyService to let shared code to easily resolve Interfaces to platform-specific implementations, allowing you to access features of the iOS, Android and Windows Phone SDKs from your PCL or Shared Project.

The problem with Xamarin’s DependencyService is that it requires a static call to DependencyService.Get<> in your shared code to get a platform-specific instance of the interface at run time. This makes your ViewModels less testable, and hides the dependencies of your class.

Prism simplifies this feature by allowing you to simply request any dependencies that have been registered with Xamarin’s DependencyService via your class constructor.

public MainPageViewModel(ITextToSpeech textToSpeechService)
{
 textToSpeechService.Speak("Hello World");
}

You can also gain access to Xamarin’s DependencyService by using the IDependencyService interface. This interface removes the static call in your ViewModel, but still gives you access to Xamarin’s DependencyService API.

public MainPageViewModel(IDependencyService dependencyService)
{
 dependencyService.Get<ITextToSpeech>().Speak("Hello World");
}

Example

Step 1: Create Project

Create a new Xamarin.Forms Portable or Shared project.

Step 2: Add Prism

Use NuGet to add Prism to each of your projects in the solution.

Add the Following Nuget packages to your projects.

	Prism.Unity.Forms [https://www.nuget.org/packages/Prism.Unity.Forms/]

	Prism.Forms [https://www.nuget.org/packages/Prism.Forms/]

	Prism.Core [https://www.nuget.org/packages/Prism.Core/]

Hint: If you add the Prism.Unity.Forms NuGet package first, it will bring in the other Prism packages automatically.

Step 3: Add a Service

In this examples, we will leverage the speech API of each platform to provide text to speech capabilities to our application. This means we need to create a service for each platform that will invoke that specific platform’s speech API.

This will require two steps:

	Add an interface to the Portable project that will define the contract for our speech service:

public interface ITextToSpeech
{
 void Speak(string text);
}

	Add a class that implements our interface to each specific platform.

Windows Phone

public class TextToSpeech_WinPhone : ITextToSpeech
{
 public async void Speak(string text)
 {
 SpeechSynthesizer synth = new SpeechSynthesizer();
 await synth.SpeakTextAsync(text);
 }
}

Android

public class TextToSpeech_Android : Object, ITextToSpeech, TextToSpeech.IOnInitListener
{
 private TextToSpeech speaker;
 private string toSpeak;

 public void Speak(string text)
 {
 var c = Forms.Context;
 toSpeak = text;
 if (speaker == null)
 {
 speaker = new TextToSpeech(c, this);
 }
 else
 {
 var p = new Dictionary<string, string>();
 speaker.Speak(toSpeak, QueueMode.Flush, p);
 Debug.WriteLine("spoke " + toSpeak);
 }
 }

 #region IOnInitListener implementation

 public void OnInit(OperationResult status)
 {
 if (status.Equals(OperationResult.Success))
 {
 Debug.WriteLine("speaker init");
 var p = new Dictionary<string, string>();
 speaker.Speak(toSpeak, QueueMode.Flush, p);
 }
 else
 {
 Debug.WriteLine("was quiet");
 }
 }

 #endregion
}

iOS

public class TextToSpeech_iOS : ITextToSpeech
{
 public void Speak(string text)
 {
 var speechSynthesizer = new AVSpeechSynthesizer();

 var speechUtterance = new AVSpeechUtterance(text)
 {
 Rate = AVSpeechUtterance.MaximumSpeechRate / 4,
 Voice = AVSpeechSynthesisVoice.FromLanguage("en-US"),
 Volume = 0.5f,
 PitchMultiplier = 1.0f
 };

 speechSynthesizer.SpeakUtterance(speechUtterance);
 }
}

Note: To Enable the speech capabilities on Windows Phone, tick the ID_CAP_SPEECH_RECOGNITION capability in the WMAppManifest.xml, otherwise access to the speech APIs are blocked.

[image: WMAppManifest setting for speech]

Step 4: Attribute the DependencyService

Now, add the DependencyService attribute to each of the services classes in the respective platforms. This registers the platform specific implementation of the speech service with Xamarin.Forms’ DependencyService.

Windows Phone DependencyService

[assembly: Dependency(typeof(TextToSpeech_WinPhone))]

Android DependencyService

[assembly: Dependency(typeof(TextToSpeech_Android))]

iOS DependencyService

[assembly: Dependency(typeof(TextToSpeech_iOS))]

Step 5: Use the Speech Service

Create the View

Create a view that we can use to pass text to the speech service for the device to read back. This means we will need one Entry element to accept the text to speak, and one Button element to invoke a command in a ViewModel that will execute the speaking process from our speech service.

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:mvvm="clr-namespace:Prism.Mvvm;assembly=Prism.Forms"
 mvvm:ViewModelLocator.AutowireViewModel="True"
 x:Class="UsingDependencyService.Views.MainPage">
 <StackLayout VerticalOptions="CenterAndExpand" HorizontalOptions="CenterAndExpand">
 <Entry Text="{Binding TextToSay}" VerticalOptions="Center" HorizontalOptions="Center" />
 <Button Command="{Binding SpeakCommand}" Text="Speak"/>
 </StackLayout>
</ContentPage>

Create the ViewModel

Create a ViewModel that has two properties that our View will bind to. We need a property to represent the text that we want to be spoken, and a command that the button in the View will invoke.

public class MainPageViewModel : BindableBase
{
 private string _textToSay = "Hello from Xamarin.Forms and Prism";
 public string TextToSay
 {
 get { return _textToSay; }
 set { SetProperty(ref _textToSay, value); }
 }

 public DelegateCommand SpeakCommand { get; set; }

 public MainPageViewModel()
 {
 SpeakCommand = new DelegateCommand(Speak);
 }

 private void Speak()
 {
 //TODO: call service
 }
}

Use the Service

Normally to use Xamarin.Forms DependencyService, you have to make a static method call in your ViewModel like this:

private void Speak()
{
 DependencyService.Get<ITextToSpeech>().Speak(TextToSay);
}

This is not good. You always want to avoid making calls to static methods in your ViewModela for a number of reasons. So how do we fix this? Easy! Let Prism do it for you.

When you attribute a class with the Xamarin.Forms DependencyService attribute, Prism automatically registers that class with the container. This means you can now request the service via the ViewModel constructor as you do with your other dependencies.

Modify the ViewModel to accept the service through the constructor. You will need to store this service instance in a variable so that it can be access in the Speak method.

public class MainPageViewModel : BindableBase
{
 private readonly ITextToSpeech _textToSpeech;

 private string _textToSay = "Hello from Xamarin.Forms and Prism";
 public string TextToSay
 {
 get { return _textToSay; }
 set { SetProperty(ref _textToSay, value); }
 }

 public DelegateCommand SpeakCommand { get; set; }

 public MainPageViewModel(ITextToSpeech textToSpeech)
 {
 _textToSpeech = textToSpeech;
 SpeakCommand = new DelegateCommand(Speak);
 }

 private void Speak()
 {
 _textToSpeech.Speak(TextToSay);
 }
}

As you can see, you no longer need to make a call to the static Xamarin.Forms.DependencyService. Just ask for it in your ViewModel constructor, and Prism will use the container to resolve the instance and provide it to you.

View the Sample [https://github.com/PrismLibrary/Prism-Samples-Forms/tree/master/UsingDependencyService]

 Getting started with Prism for Xamarin.Forms

Getting started with Prism for Xamarin.Forms

Content

	Overview

	Prerequisites

	Background
	Xamarin.Forms

	MVVM

	Creating a new solution
	Installing and using the Prism Template Pack

	Running the app

	Views overview

	View Models overview

	Adding a new Page (View) and ViewModel

	Navigating to your new Page

Overview

This guide will walk you through creating a new Xamarin.Forms project that uses Prism, running the application, and modifying it to demonstrate basic use of Prism for Xamarin.Forms.

Prerequisites

This guide assumes that you have Xamarin, Xamarin Android Player, and Visual Studio 2015 already installed along with a basic understanding of those technologies. If you do not, please take a look at the excellent resources available at xamarin.com and visualstudio.com.

Background

What’s Xamarin.Forms?

Build native UIs for iOS, Android and Windows
from a single, shared C# codebase.

Xamarin.Forms allows you to build applications for iOS, Android and Windows that share both back and front end code. For more information take a look at Xamarin.Forms [https://xamarin.com/forms].

What’s MVVM?

MVVM stands for Model View ViewModel and it is a design pattern that allows for clean separation of concerns between the user interface and the model behind it. A major advantage of MVVM is that it leverages data-binding to display information and respond to user input.

The following diagram shows the interaction between the components in MVVM.

[image: Diagram of MVVM pattern. View communicates with view model with data binding and commands. view model operates on the Model.]

For more information reference The MVVM Pattern [https://msdn.microsoft.com/en-us/library/hh848246.aspx] by Microsoft Patterns & Practices

Creating a new solution

Installing and using the Prism Template Pack

The easiest way to get a new solution up and running is with the Prism Template Pack. Let’s start by installing it in Visual Studio.

Go to Tools > Extensions and Updates select Online and search for Prism Template Pack. Locate the the extensions, click Download, and complete the installation. Click the Restart Now button.

Now that we have the Template Pack installed, lets create a new solution. Go to File > New > Project... select Installed > Templates > Visual C# > Prism. Here you will find all the templates available for a new Prism project/solution.

Select Prism Unity App (Forms) Visual C# fill in the name of your project/solution and click OK

A new solution was created with a Portable Class Library (PCL) project labeled (Portable) and device-dependent projects (Android, iOS, Windows Phone). NuGet packages were added to these projects for Xamarin.Forms, Prism, and Prism.Unity along with all their dependencies.

[image: Solution structure]

Running the app

Android

Right click on the Android project and select set as startup project. Also ensure build and deploy are both checked for the Android project in the Configuration Manager.

Open the Xamarin Android Player and ensure that a device image is installed and note the API level of the device image.

Open the Android project properties and change the Minimum Android to target to be equal or less than the API level of the device image you will be running on.

Select the Android Player device from the Debug drop down menu and click the debug play button (or press F5).

iOS

This is for Visual Studio (on Windows):

First make sure that there’s a connection with the Xamarin Mac Agent.

Right click on the iOS project and select set as startup project. Also ensure build and deploy are both checked for the iOS project in the Configuration Manager.

For running the application on a physical iOS device, there must be an connected the iOS device to the PC. The build configuration needs to be set on “iPhone” (even for testing with an iPad).
If there is only one iOS device attached to the PC it’ll select the one. When there’re multiple iOS devices attached, you must select with device you want to run on.

For running the application on a iOS simulator needs the build configuration be set to “iPhoneSimulator” (even for testing with an iPad simulator).

After chosen the build configuration, the app can be run by click the debug play button (or press F5).

Windows Phone

To be added.

Views

Within the Portable project there is a View folder. This folder will contain all of your view related code. The template created a Content Page [https://developer.xamarin.com/guides/xamarin-forms/controls/pages/] called MainPage.xaml in this folder. Lets take a look at this file.

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:prism="clr-namespace:Prism.Mvvm;assembly=Prism.Forms"
 prism:ViewModelLocator.AutowireViewModel="True"
 x:Class="GettingStartedWithPrismForXamarinForms.Views.MainPage"
 Title="MainPage">
 <StackLayout HorizontalOptions="Center" VerticalOptions="Center">
 <Label Text="{Binding Title}" />
 </StackLayout>
</ContentPage>

There are some important things happening here, let’s break down whats going on.

xmlns:prism="clr-namespace:Prism.Mvvm;assembly=Prism.Forms"

The Prism library is referenced.

prism:ViewModelLocator.AutowireViewModel="True"

This view (MainPage.xaml) is wired to the view model (MainPageViewModel.cs) automatically via naming conventions allowing for databinding to the view model. See ViewModelLocator documentation for more information.

<Label Text="{Binding Title}" />

A label is created on the page with the text bound to the property named Title in the view model (MainPageViewModel.cs).

View Models

Within the Portable project there is a ViewModels folder. This folder will contain all of your view model related code. The template created a view model for the MainPage called MainPageViewModel.cs in this folder. Lets take a look at this class and break down what is going on here.

public class MainPageViewModel : BindableBase, INavigationAware
{
 private string _title;
 public string Title
 {
 get { return _title; }
 set { SetProperty(ref _title, value); }
 }

 public void OnNavigatedFrom(NavigationParameters parameters){}

 public void OnNavigatedTo(NavigationParameters parameters)
 {
 if (parameters.ContainsKey("title"))
 Title = (string)parameters["title"] + " and Prism";
 }
}

public class MainPageViewModel : BindableBase, INavigationAware

The MainPageViewModel inherits from BindableBase and implements the INavigationAware interface.

The BindableBase class implements the INotifyPropertyChanged [https://msdn.microsoft.com/en-us/library/system.componentmodel.inotifypropertychanged%28v=vs.110%29.aspx] interface which allows for the view to be able to databind to properties created here. BindableBase also provides a protected SetProperty method to simplify creating these properties.

The INavigationAware interface allows for the view model to be notified when it is being navigated from or being navigated to. See the INavigationAware documentation for more information.

private string _title;
public string Title
{
 get { return _title; }
 set { SetProperty(ref _title, value); }
}

Creates a public property named Title that triggers the OnPropertyChanged event when the value is set.

public void OnNavigatedFrom(NavigationParameters parameters){}

...

public void OnNavigatedTo(NavigationParameters parameters)
{
...

These methods are called with the view model is navigated from or to. Here it expects a string via the NavigationParameters parameter and modifies the Title property with the string’s value. See the INavigationAware documentation for more information.

Adding a new Page (View) and ViewModel

Now that we have a basic understanding of how project is setup with Prism for Xamarin.Forms, let’s add to it and create a new Page (View) and ViewModel. We’ll create a page with a text entry field and a button similar to the wireframe below. Later we’ll add functionality to make the phone speak the text that’s entered into the text field.

[image: Sketch of a view with a text entry field and button.]

View

Let’s create the new content page in the project, also known as the view. Again, the easiest way to do this is with the Prism Template Pack. We’ll create the view first. Right click on the Views folder, click Add > New Item... under Installed > Visual C# > Prism > Forms select Prism ContentPage (Forms). Name the page SpeakPage.xaml and click Add. This creates a blank content page.

There are many different types of pages available in Xamarin Forms [https://developer.xamarin.com/guides/xamarin-forms/controls/pages/], but the ContentPage is one of the most basic. It displays a single visual object, typically a layout [https://developer.xamarin.com/guides/xamarin-forms/controls/layouts/]. UpdateSpeakPage.xaml to have the contents shown below.

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/"
 xmlns:prism="clr-namespace:Prism.Mvvm;assembly=Prism.Forms"
 prism:ViewModelLocator.AutowireViewModel="True"
 x:Class="HelloXFPrism.Views.SpeakPage">
 <StackLayout VerticalOptions="CenterAndExpand">
 <Entry Text="{Binding TextToSay}" />
 <Button Text="Speak" Command="{Binding SpeakCommand}"/>
 </StackLayout>
</ContentPage>

Let’s break down what is going on here.

xmlns:prism="clr-namespace:Prism.Mvvm;assembly=Prism.Forms"
The Prism library is referenced.

prism:ViewModelLocator.AutowireViewModel="True"
This view (SpeakPage.xaml) is wired to the view model (SpeakPageViewModel.cs) automatically via naming conventions allowing for databinding to the view model. See ViewModelLocator documentation for more information.

<StackLayout VerticalOptions="CenterAndExpand">
...
</StackLayout>

This sets the ContentPage’s view to a StackLayout [https://developer.xamarin.com/api/type/Xamarin.Forms.StackLayout/]. A StackLayout positions it’s child elements each on a single line, stacking them either horizontally or vertically. This is a very common layout used within Xamarin Forms. We’re using it along with it’s VerticalOptions set to CenterAndExpand so the child elements show up as stacked vertically and centered as shown in the wireframe above.

<Entry Text="{Binding TextToSay}" />
An Entry [https://developer.xamarin.com/api/type/Xamarin.Forms.Entry/] is provided that allows the user to enter text. The text that is entered is data-bound to a property named TextToSay in the SpeakPageViewModel, which we’ll create soon.

<Button Text="Speak" Command="{Binding SpeakCommand}"/>
A Button [https://developer.xamarin.com/api/type/Xamarin.Forms.Button/] is placed below the Entry. The button’s command is executed when it is clicked and is bound to a command named SpeakCommand in the SpeakPageViewModel, which we’ll create soon.

View Model

Now that we have a view named SpeakPage, we’ll add it’s corresponding view model. As with all the other steps, the easiest way to create a view model is with the Prism Template Pack. Right click on the ViewModels folder, click Add > New Item... under Installed > Visual C# > Prism > Forms select Prism ViewModel. Name the page SpeakPageViewModel.cs and click Add. This creates a view model for the SpeakPage. Update SpeakPageViewModel.cs to have the following contents within the namespace.

namespace HelloXFPrism.ViewModels
{
 using Prism.Commands;
 using Prism.Mvvm;

 public class SpeakPageViewModel : BindableBase
 {
 private string _textToSay = "Hello Prism";
 public string TextToSay
 {
 get { return _textToSay; }
 set { SetProperty(ref _textToSay, value); }
 }

 public DelegateCommand SpeakCommand { get; set; }

 public SpeakPageViewModel()
 {
 SpeakCommand = new DelegateCommand(Speak);
 }

 private void Speak()
 {
 //TODO: call service
 }
 }
}

Let’s break down what is going on here.

private string _textToSay = "Hello Prism";
public string TextToSay
{
 get { return _textToSay; }
 set { SetProperty(ref _textToSay, value); }
}

Creates a string property that the text entry field is bound to. The initial text is “Hello Prism”. SetProperty is provided by Prism to simplify creating bindable properties. See the ViewModels section of this document for more information.

public DelegateCommand SpeakCommand { get; set; }

public SpeakPageViewModel()
{
 SpeakCommand = new DelegateCommand(Speak);
}

Creates a DelegateCommand [https://msdn.microsoft.com/en-us/library/microsoft.practices.prism.commands.delegatecommand%28v=pandp.50%29.aspx] called SpeakCommand that the Speak button is bound to. The SpeakCommand is created in the SpeakPageViewModel constructor and will invoke the Speak method, which hasn’t been written yet. To be able to perform the actual text-to-speech platform specific APIs need to be used. This is outside the scope of this documentation, but head over to the Dependency Service documentation to see how this is done.

Navigating to your new page

We now have two pages in our app, a main page and a speak page. To navigate to the new page, we’ll need to register the page for navigation. In the Portable Class Library, HelloXFPrism (Portable), open App.xaml.cs (you may have to click the carrot next to App.xaml to see it). Register the new page for navigation by updating RegisterTypes() to include the following.

Container.RegisterTypeForNavigation<SpeakPage>();

You can now navigate to the new page so let’s setup MainPage to navigate. In MainPage.xaml add a button below the existing label.

<Button Text="Navigate to speak page" Command="{Binding NavigateToSpeakPageCommand}" />

Now we need to update MainPage’s view model to include the NavigateToSpeakPageCommand and perform navigation. Update MainPageViewModel.cs to include the following.

private INavigationService _navigationService;

public DelegateCommand NavigateToSpeakPageCommand { get; private set; }

public MainPageViewModel(INavigationService navigationService)
{
 _navigationService = navigationService;
 NavigateToSpeakPageCommand = new DelegateCommand(NavigateToSpeakPage);
}

private void NavigateToSpeakPage()
{
 _navigationService.Navigate("SpeakPage");
}

Let’s break down what’s going on here.

public MainPageViewModel(INavigationService navigationService)
{
 _navigationService = navigationService;
 NavigateToSpeakPageCommand = new DelegateCommand(NavigateToSpeakPage);
}

Using dependency injection, gets the navigation service and also creates the NavigateToSpeakPageCommand.

private void NavigateToSpeakPage()
{
 _navigationService.NavigateAsync("SpeakPage");
}

Tells the navigation service to navigate to the SpeakPage.

With navigation all wired up and the “Navigate to speak page” button is pressed in the view the NavigateToSpeakPageCommand will be called on the view model, the command will execute the NavigateToSpeakPage method, and finally the Navigation Service will perform the navigation to the SpeakPage.

For more information on the navigation service see the navigation service documentation

 Using the ViewModelLocator

Using the ViewModelLocator

Prism for XF depends on the use of VML

namespace

attached property

naming convention

change naming convention

changing resolver

custom registrations

maybe link to primary ViewModelLocator topic so we don’t repeat content, and only include the namesapce and attached property info in this topic?

 Using the Navigation Service

Using the Navigation Service

Navigating in a Prism application is conceptually different than standard navigation in Xamarin.Forms. While Xamarin.Forms navigation relies on a Page class instance to navigate, Prism removes all dependencies on Page types to achieve loosely coupled navigation from within a ViewModel. In Prism, the concept of navigating to a View or navigating to a ViewModel does not exist. Instead, you simply navigate to an experience, or a unique identifier, which represents the target view you wish to navigate to in your application.

Page navigation in Prism is accomplished by using the INavigationService.

Getting the Navigation Service

To obtain the INavigationService in your ViewModels simply ask for it as a constructor parameter. There is a caveat while injecting the Navigation Service into your ViewModels. The current version of the Prism.Forms library requires that you name the injection parameter precisely as navigationService. Otherwise the Navigation Service is unaware of the current View it is used on. This is a limitation of the dependency injection container.

public MainPageViewModel(INavigationService navigationService) // has to be named correctly
{
 _navigationService = navigationService;
}

Navigating

Once you have the INavigationService in your ViewModel, you can navigate to your target views by calling the INavigationService.NavigateAsync method and provide the unique identifier/key that represents the target Page.

_navigationService.NavigateAsync("MainPage");

For more dynamic scenarios, or scenarios which involve navigating with Uris, you can use either a relative or an absolute Uri to navigate.

//relative
_navigationService.NavigateAsync(new Uri("MainPage", UriKind.Relative));

//absolute
_navigationService.NavigateAsync(new Uri("http://www.brianlagunas.com/MainPage", UriKind.Absolute);

Note: An absolute URI resets the navigation stack regardless of where you call it. It is equivalent to Application.Current.MainPage = new MainPage()

Important: If you do not register your Pages with Prism, navigation will not work.

Registering

Registering your Page for navigation is essentially mapping a unique identifier/key to the target view during the bootstrapping process. In order to register your Pages for Navigation, override the RegisterTypes method in your Bootstrapper.

Bootstrapper:

protected override void RegisterTypes()
{
 //register pages for navigation
}

Next, use the RegisterTypeForNavigation<T> extension method off of the current dependency injection container. There are three ways to register your Pages for navigation.

Default Registration

By default, RegisterTypeForNavigation will use the Name of the Page type as the unique identifier/key. The following code snippet results in a mapping between the MainPage type, and the unique identifier/key of “MainPage”. This means when you request to navigate to the MainPage, you will provide the string “MainPage” as the navigation target.

protected override void RegisterTypes()
{
 Container.RegisterTypeForNavigation<MainPage>();
}

To navigate to the MainPage using this registration method:

_navigationService.NavigateAsync("MainPage");

Custom Registration

You can override this convention by providing a custom unique identifier/key as a method parameter. In this case, we are overriding the convention for MainPage, and are creating a mapping between the MainPage Page type, and the unique identifier/key of “CustomKey”. So when we want to navigate to the MainPage, we would provide the “CustomKey” as the navigation target.

protected override void RegisterTypes()
{
 Container.RegisterTypeForNavigation<MainPage>("CustomKey");
}

To navigate to the MainPage using this registration method:

_navigationService.NavigateAsync("CustomKey");

GoBackAsync

Going back to the previous View is as simple calling the INavigationService.GoBackAsync method.

_navigationService.GoBackAsync();

Passing parameters

The Prism navigation service also allows you to pass parameters to the target view during the navigation process. Passing parameters to the next View can be done using an overload of the INavigationService.NavigateAsync method. This overload accepts a NavigationParameters object that can be used to supply data to the next View. The NavigationParameters object is in fact just a dictionary. It can accept any arbitrary object as a value.

var navigationParams = new NavigationParameters ();
navigationParams.Add("model", new Contact ());
_navigationService.NavigateAsync("MainPage", navigationParams);

You can also create an HTML query string to generate your parameter collection.

var queryString = "code=CR&desc=Red";
var navigationParams = new NavigationParameters(queryString);
_navigationService.NavigateAsync("MainPage", navigationParameters);

When using a Uri to navigate, you may append the Uri with parameters, which will be used as the navigation parameters.

//query string
_navigationService.NavigateAsync(new Uri("MainPage?id=3&name=brian", UriKind.Relative));

//using NavigationParameters in Uri
_navigationService.NavigateAsync(new Uri("MainPage" + navParameters.ToString(), UriKind.Relative));

//using both Uri parameters and NavigationParameters
var navParameters = new NavigationParameters ();
navParameters.Add("name", "brian");
_navigationService.NavigateAsync(new Uri("MainPage?id=3", UriKind.Relative), navParameters);

Getting to this data in the target View that is being navigated to, can be achieved by using the INavigationAware interface on the corresponding ViewModel.

INavigationAware

The ViewModel of the target navigation Page can participate in the navigation process by implementing the INavigationAware interface. This interface adds two methods to your ViewModel so you can intercept when the ViewModel is navigated to, or navigated away from.

Example:

public class ContactPageViewModel : INavigationAware
{
 private Contact _contact;

 public void OnNavigatedTo(NavigationParameters parameters)
 {
 _contact = (Contact)parameters["model"];
 }

 public void OnNavigatedFrom(NavigationParameters parameters)
 {

 }
}

IConfirmNavigation

A ViewModel can determine whether or not it can perform a navigation operation. When a ViewModel implements the IConfirmNavigation or the IConfirmNavigationAsync interface, the navigation process looks to see what the result of this method is. If true, a navigation process can be invoked, meaning a call to NavigationService.NavigateAsync("target") can be made. If false, the ViewModel cannot invoke the navigation process.

public class ContactPageViewModel : IConfirmNavigation
{
 public bool CanNavigate(NavigationParameters parameters)
 {
 return true;
 }
}

 Working with TabbedPage’s (or any MultiPage)

Working with TabbedPage’s (or any MultiPage)

 Using the EventToCommandBehavior

Using the EventToCommandBehavior

The EventToCommandBehavior class provide a convenient way to, in XAML, “bind” events to ICommand according to MVVM paradigm to avoid code behind.

Usage

The EventToCommandBehavior expose the following properties

	EventName The name of the event to listen to. For example ItemTapped

	Command The ICommand that will be executed when the event is raised

	CommandParameter The parameter that will be sent to the ICommand.Execute(object) method

	EventArgsConverter Instance of IValueConverter that allows operating on the EventArgs type for the EventName

	EventArgsConverterParameter The parameter that will be sent as the parameter argument to IValueConverter.Convert method

	EventArgsParameterPath Parameter path to extract property from EventArgs that will be passed to ICommand.Execute(object)

First declare the namespace and assembly in where EventToCommandBehavior is declared and declare a XML-namespace.

xmlns:b="clr-namespace:Prism.Behaviors;assembly=Prism.Forms"

CommandParameter

Bind or declare a parameter that will be sent to the ICommand.Execute(object) method.

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="MyNamespace.ContentPage"
 xmlns:b="clr-namespace:Prism.Behaviors;assembly=Prism.Forms">
 <ListView>
 <ListView.Behaviors>
 <b:EventToCommandBehavior EventName="ItemTapped"
 Command="{Binding ItemTappedCommand}"
 CommandParameter="MyParameter" />
 </ListView.Behaviors>
 </ListView>
</ContentPage>

EventArgsConverter

Using the EventArgsConverter to retrieve the ItemTappedEventArgs.Item property.

using System;
using System.Globalization;
using Xamarin.Forms;

namespace Prism.Converters
{
 public class ItemTappedEventArgsConverter : IValueConverter
 {
 public object Convert(object value, Type targetType, object parameter, CultureInfo culture)
 {
 var itemTappedEventArgs = value as ItemTappedEventArgs;
 if (itemTappedEventArgs == null)
 {
 throw new ArgumentException("Expected value to be of type ItemTappedEventArgs", nameof(value));
 }
 return itemTappedEventArgs.Item;
 }

 public object ConvertBack(object value, Type targetType, object parameter, CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }
}

The XAML need a reference to the converter and the converter resource need to be defined

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="MyNamespace.ContentPage"
 xmlns:b="clr-namespace:Prism.Behaviors;assembly=Prism.Forms"
 xmlns:c="clr-namespace:Prism.Converters;assembly=Prism.Forms">
 <ContentPage.Resources>
 <ResourceDictionary>
 <c:ItemTappedEventArgsConverter x:Key="itemTappedEventArgsConverter" />
 </ResourceDictionary>
 </ContentPage.Resources>
 <ListView>
 <ListView.Behaviors>
 <b:EventToCommandBehavior EventName="ItemTapped"
 Command="{Binding ItemTappedCommand}"
 EventArgsConverter="{StaticResource itemTappedEventArgsConverter}" />
 </ListView.Behaviors>
 </ListView>
</ContentPage>

EventArgsParameterPath

Attach the command to ItemTapped event will raise the itemTappedEventArgs event.

public class ItemTappedEventArgs : EventArgs
{
 public object Item { get; }
 public object Group { get; }
}

Setting EventArgsParameterPath to Item will extract the property value and pass it to the ICommand.Execute(object) method

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="MyNamespace.ContentPage"
 xmlns:b="clr-namespace:Prism.Behaviors;assembly=Prism.Forms">
 <ListView>
 <ListView.Behaviors>
 <b:EventToCommandBehavior EventName="ItemTapped"
 Command="{Binding ItemTappedCommand}"
 EventArgsParameterPath="Item" />
 </ListView.Behaviors>
 </ListView>
</ContentPage>

 Using the Page Dialog Service

Using the Page Dialog Service

Displaying an alert or asking a user to make a choice is a common UI task. Xamarin.Forms has two methods on the Page class for interacting with the user via a pop-up: DisplayAlert and DisplayActionSheet. Prism provides a single IPageDialogService that abstracts away the Xamarin.Forms Page object dependency required for these actions and keeps your ViewModels clean and testable. Simply request this service via the constructor of your ViewModel, and call either the DisplayAlert, or DisplayActionSheet to invoke the desired notification.

public MainPageViewModel(IPageDialogService dialogService)
{
 _dialogService = dialogService;
}

DisplayAlertAsync

The DisplayAlertAsync method shows a modal pop-up to alert the user or ask simple questions of them. To display these alerts with Prism’s IPageDialogService, use the DisplayAlertAsync method. The following line of code shows a simple message to the user:

_dialogService.DisplayAlertAsync("Alert", "You have been alerted", "OK");

[image: Alert dialog on the 3 major platforms]

This example does not collect information from the user. The alert displays modally and once dismissed the user continues interacting with the application. DisplayAlertAsync can also be used to capture a user’s response by presenting two buttons and returning a boolean.

To get a response from an alert, supply text for both buttons and await the method. After the user selects one of the options the answer will be returned to your code. Note the async and await keywords in the sample code below:

var alertButton2 = new Button { Text = "DisplayAlert Yes/No" }; // triggers alert
alertButton2.Clicked += async (sender, e) =>
{
 var answer = await DisplayAlertAsync ("Question?", "Would you like to play a game", "Yes", "No");
 Debug.WriteLine("Answer: " + answer); // writes true or false to the console
};

[image: Question dialog on the 3 major platforms]

DisplayActionSheetAsync

The UIActionSheet is a common UI element in iOS. The IPageDialogService.DisplayActionSheetAsync lets you include this control in cross-platforms apps, rendering native alternatives in Android and Windows Phone.

To display an action sheet, await DisplayActionSheetAsync in any ViewModel, passing the message and button labels as strings. The method returns the string label of the button that was clicked by the user. A simple example is shown here:

var actionButton1 = new Button { Text = "ActionSheet Simple" };
actionButton1.Clicked += async (sender, e) =>
{
 var action = await DisplayActionSheetAsync ("ActionSheet: Send to?", "Cancel", null, "Email", "Twitter", "Facebook");
 Debug.WriteLine("Action: " + action); // writes the selected button label to the console
};

[image: Action dialog on the 3 major platforms]

The destroy button is rendered differently than the others, and can be left null or specified as the third string parameter. This example uses the destroy button:

var actionButton2 = new Button { Text = "ActionSheet" };
actionButton2.Clicked += async (sender, e) =>
{
 var action = await DisplayActionSheetAsync ("ActionSheet: Save Photo?", "Cancel", "Delete", "Photo Roll", "Email");
 Debug.WriteLine("Action: " + action); // writes the selected button label to the console
};

[image: Another action dialog on the 3 major platforms]

Additionally, Prism provides another option which accepts an array of IActionSheetButton that allow you to specificy the title of the buttons, as well as the DelegateCommand that should be executed when the option is selected by the user. This eliminates the need to capture a string result, perform a logical check against the result, and then execute a method or logic in response.

To create an IActionSheetButton, use one of the three factory methods off of the ActionSheetButton class.

	ActionSheetButton.CreateButton

	ActionSheetButton.CreateCancelButton

	ActionSheetButton.CreateDestroyButton

IActionSheetButton selectAAction = ActionSheetButton.CreateButton("Select A", new DelegateCommand(() => { Debug.WriteLine("Select A"); }));
IActionSheetButton cancelAction = ActionSheetButton.CreateCancelButton("Cancel", new DelegateCommand(() => { Debug.WriteLine("Cancel"); }));
IActionSheetButton destroyAction = ActionSheetButton.CreateDestroyButton("Destroy", new DelegateCommand(() => { Debug.WriteLine("Destroy"); }));

void ShowActionSheet()
{
 _pageDialogService.DisplayActionSheetAsync("My Action Sheet", selectAAction, cancelAction, destroyAction);
}

Note: The order in which you pass in the IActionSheetButton parameters does not matter. The IPageDialogService will make sure the parameters are handled properly for you.

 Introduction to the Prism Library for WPF

Introduction to the Prism Library for WPF

Composite applications typically feature multiple screens, rich user interaction and data visualization, and that embody significant presentation and business logic. These applications typically interact with multiple back-end systems and services and, using a layered architecture, may be physically deployed across multiple tiers. It is expected that the application will evolve significantly over its lifetime in response to new requirements and business opportunities. In short, these applications are “built to last” and “built for change.” Applications that do not demand these characteristics may not benefit from using Prism.

Prism includes reference implementations, QuickStarts, reusable library code (the Prism Library), and extensive documentation. This version of Prism targets the Microsoft .NET Framework 4.5 and includes new guidance around the Model-View-ViewModel (MVVM) pattern, navigation, and the Managed Extensibility Framework (MEF). Because Prism is built on the .NET Framework 4.5 (which includes WPF) , familiarity with these technologies is useful for evaluating and adopting Prism.

It should be noted that while Prism is not difficult to learn, developers must be ready and willing to embrace patterns and practices that may be new to them. Management understanding and commitment is crucial, and the project deadline must accommodate an investment of time up front for learning these patterns and practices.

Why Use Prism?

Designing and building rich WPF client applications that are flexible and easy to maintain can be challenging. This section describes some of the common challenges you might encounter when building WPF client applications, and describes how Prism helps you to address those challenges.

Client Application Development Challenges

Typically, developers of client applications face quite a few challenges. Application requirements can change over time. New business opportunities and challenges may present themselves, new technologies may become available, or even ongoing customer feedback during the development cycle may significantly affect the requirements of the application. Therefore, it is important to build the application so that it is flexible and can be easily modified or extended over time. Designing for this type of flexibility can be hard to accomplish. It requires an architecture that allows individual parts of the application to be independently developed and tested and that can be modified or updated later, in isolation, without affecting the rest of the application.

Most enterprise applications are sufficiently complex that they require more than one developer, maybe even a large team of developers that includes user interface (UI) designers and localizers in addition to developers. It can be a significant challenge to decide how to design the application so that multiple developers or subteams can work effectively on different pieces of the application independently, yet ensuring that the pieces come together seamlessly when integrated into the application.

Designing and building applications in a monolithic style can lead to an application that is very difficult and inefficient to maintain. In this case, “monolithic” refers to an application in which the components are very tightly coupled and there is no clear separation between them. Typically, applications designed and built this way suffer from problems that make the developer’s life hard. It is difficult to add new features to the system or replace existing features, it is difficult to resolve bugs without breaking other portions of the system, and it is difficult to test and deploy. Also, it impacts the ability of developers and designers to work efficiently together.

The Composite Approach

An effective remedy for these challenges is to partition the application into a number of discrete, loosely coupled, semi-independent components that can then be easily integrated together into an application “shell” to form a coherent solution. Applications designed and built this way are often known as composite applications.

Composite applications provide many benefits, including the following:

	They allow modules to be individually developed, tested, and deployed by different individuals or subteams; they also allow them to be modified or extended with new functionality more easily, thereby allowing the application to be more easily extended and maintained. Note that even single-person projects experience benefits in creating more testable and maintainable applications using the composite approach.

	They provide a common shell composed of UI components contributed from various modules that interact in a loosely coupled way. This reduces the contention that arises from multiple developers adding new functionality to the UI, and it promotes a common appearance.

	They promote reuse and a clean separation of concerns between the application’s horizontal capabilities, such as logging and authentication, and the vertical capabilities, such as business functionality that is specific to your application. This also allows you to more easily manage the dependencies and interactions between application components.

	They help maintain a separation of roles by allowing different individuals or subteams to focus on a specific task or piece of functionality according to their focus or expertise. In particular, it provides a cleaner separation between the UI and the business logic of the application—this means the UI designer can focus on creating a richer user experience.

Composite applications are highly suited to a range of client application scenarios. For example, a composite application is ideal for creating a rich end-user experience over disparate back-end systems. The following illustration shows an example of this type of a composite application with multiple back-end systems.

[image: Composite application with multiple back-end systems]

In this type of application, the user can be presented with a rich and flexible user experience that provides a task-oriented focus over functionality that spans multiple back-end systems, services, and data stores, where each is represented by one or more dedicated modules. The clean separation between the application logic and the UI allows the application to provide a consistent and differentiated appearance across all constituent modules.

Additionally, a composite application can be useful when there are independently evolving components in the UI that heavily integrate with each other and that are often maintained by separate teams. The following illustration shows a screen shot of this type of application. Each of the areas highlighted represent independent components that are composed into the UI.

[image: Stock Trader Reference Implementation]

In this case, the composite application allows the UI to be dynamic composed. This delivers a flexible user experience. For example, it can allow new functionality to be dynamically added to the application at run time, which enables rich end-user customization and extensibility.

Challenges Not Addressed by Prism

Although Prism helps you to address many of the challenges you might face when building WPF applications, there are many other challenges that you might face, depending on your application scenario and requirements. For example, Prism does not directly address the following topics:

	Occasional connectivity and data synchronization

	Service and messaging infrastructure design

	Authentication and authorization

	Application performance

	Application versioning

	Error handling and fault tolerance

Prerequisites

Prism assumes you have hands-on experience with WPF . There are a few important concepts that Prism uses heavily, and you should become familiar with them. They include the following:

	XAML (Extensible Application Markup Language). The language to declaratively define and initialize the user interface in WPF applications.

	Data binding. This is how UI elements are connected to components and data in WPF.

	Resources. These are how styles, data templates, and control templates are created and managed in WPF.

	Commands. These are how user gestures and input are connected to controls.

	User controls. These are components that provide custom behavior or custom appearance.

	Dependency properties. These are extensions to the common language runtime (CLR) property system to enable property setting and monitoring in support of data binding, routed commands, and events.

	Behaviors. Behaviors are objects that encapsulate interactive functionality that can be easily applied to controls in the user interface.

An Overview of Prism

Architectural Goals

The guidance is designed to help architects and developers achieve the following objectives:

	Create an application from modules that can be built, assembled and, optionally, deployed by independent teams using WPF.

	Minimize cross-team dependencies and allow teams to specialize in different areas, such as user interface (UI) design, business logic implementation, and infrastructure code development.

	Use an architecture that promotes reusability across independent teams.

	Increase the quality of applications by abstracting common services that are available to all the teams.

	Incrementally integrate new capabilities.

Prism Design Goals

Prism was designed to help you design and build rich, flexible, and easy-to-maintain WPF applications. The Prism Library implements design patterns that embody important architectural design principles, such as separation of concerns and loose coupling. Using the design patterns and capabilities provided by the Prism Library, you can design and build applications using loosely coupled components that can evolve independently but that can be easily and seamlessly integrated into the overall application.

Prism is designed around the core architectural design principles of separation of concerns and loose coupling. This allows Prism to provide many benefits, including the following:

	Reuse. Prism promotes reuse by allowing components and services to be easily developed, tested and integrated into one or more applications. Reuse can be achieved at the component level through the reuse of unit-tested components that can be easily discovered and integrated at run time through dependency injection, and at the application level through the use of modules that encapsulate application-level capabilities that can be reused across applications.

	Extensibility. Prism helps to create applications that are easy to extend by managing component dependencies, allowing components to be more easily integrated or replaced with alternative implementations at run time, and by providing the ability to decompose an application into modules that can be independently updated and deployed. Many of the components in the Prism Library itself can also be extended or replaced.

	Flexibility. Prism helps to create flexible applications by allowing them to be more easily updated as new capabilities are developed and integrated. Prism also allows WPF applications to be developed using common services and components, allowing the application to be deployed and consumed in the most appropriate way. It also allows applications to provide different experiences based on role or configuration.

	Team Development. Prism promotes team development by allowing separate teams to develop and even deploy different parts of the application independently. Prism helps to minimize cross-team dependencies and allows teams to focus on different functional areas (such as UI design, business logic implementation, and infrastructure code development), or on different business-level functional areas (such as profile, sales, inventory, or logistics).

	Quality. Prism can help to increase the quality of applications by allowing common services and components to be fully tested and made available to the development teams. In addition, by providing fully tested implementations of common design patterns, and the guidance needed to fully leverage them, Prism allows development teams to focus on their application requirements instead of implementing and testing infrastructure code.

It is important to note that Prism was designed so that you can use any of Prism’s capabilities and design patterns individually, or all together, depending on your requirements and your application scenario. Prism was designed so that it could be incrementally adopted, allowing you to use the capabilities and design patterns that make sense for your particular application without requiring major structural changes.

Finally, because software testing should be considered a first-class development activity and tightly integrated into the development process, Prism provides extensive support for various types of software testing, thereby allowing you to design and build applications that are easy to test. Prism itself was developed with testing in mind. It was developed to meet multiple strict quality gates to ensure that it meets Microsoft security standards and that it will function correctly on multiple operating systems, with multiple versions of Visual Studio, and with multiple programming languages. Unit tests were run after each check-in. In addition, the Prism library was tested against several additional quality gates, as listed in the following table.

Test	Description
——————————–	——-
Acceptance Testing	Validates the application functionality using user scenarios to drive the test requirements. Tests can be executed manually or automated.
Application Building Exercises	Team members build applications consuming the deliverable software.
Black Box Testing	Manual acceptance tests perform from the user point of view.
Cross Platform Testing	All automated tests are run on multiple platforms.
Globalization Testing	All automated tests are run on multiple languages.
Performance Testing	Measures how fast a particular aspect of a system performs under-load.
Security Review	Internal Microsoft security audit standards that cover thread models, identifying attack factors and running the code though security analysis tools.
Stress Testing	Measures stability of the system under extreme loads; specifically looking to drive out issues like memory leaks and threading issues.
White Box Testing	In-depth source code analysis validating the coding standards, structure and how it maps to the overall architecture.

The Prism Library source code includes unit and UI automation tests, as shown in the following table. You can use these as an educational resource, or you can run the tests against the Prism Library itself. This allows you to customize, re-compile, test and deploy a modified version of the Prism Library using similar quality gates as the Prism team.

Test	Description
———————	—————————————————————————————-
UI Automation Tests	Limited range of acceptance testing; driving the application from the user perspective
Unit Tests	Validates the implementation of a class

Prism Key Concepts

Prism provides capabilities and design patterns that may be unfamiliar to you, especially if you’re new to design patterns and composite application development. This section provides a brief overview of the main concepts behind Prism and defines some of the terminology that you will see used throughout the documentation and code.

	Modules. Modules are packages of functionality that can be independently developed, tested, and (optionally) deployed. In many situations, modules are developed and maintained by separate teams. A typical Prism application is built from multiple modules. Modules can be used to represent specific business-related functionality (for example, profile management) and encapsulate all the views, services, and data models required to implement that functionality. Modules can also be used to encapsulate common application infrastructure or services (for example, logging and exception management services) that can be reused across multiple applications.

	Module catalog. In a composite application, modules must be discovered and loaded at run time by the host application. In Prism, a module catalog is used to specify which modules to are to be loaded, when they are loaded, and in what order. The module catalog is used by the ModuleManager and ModuleLoader components, which are responsible for downloading the modules if they are remote, loading the module’s assemblies into the application domain, and for initializing the module. Prism allows the module catalog to be specified in different ways, including programmatically using code, declaratively using XAML, or using a configuration file. You can also implement a custom module catalog if you need to.

	Shell. The shell is the host application into which modules are loaded. The shell defines the overall layout and structure of the application, but it is typically unaware of the exact modules that it will host. It usually implements common application services and infrastructure, but most of the application’s functionality and content is implemented within the modules. The shell also provides the top-level window or visual element that will then host the different UI components provided by the loaded modules.

	Views. Views are UI controls that encapsulate the UI for a particular feature or functional area of the application. Views are used in conjunction with the MVVM pattern, which is used to provide a clean separation of concerns between the UI and the application’s presentation logic and data. Views are used to encapsulate the UI and define user interaction behavior, thereby allowing the view to be updated or replaced independently of the underlying application functionality. Views use data binding to interact with view model classes.

	View models. View models are classes that encapsulate the application’s presentation logic and state. They are part of the MVVM pattern. View models encapsulate much of the application’s functionality. View models define properties, commands, and events, to which controls in the view can data-bind.

	Models. Model classes encapsulate the application data and business logic. They are used as part of the MVVM pattern. Models encapsulate data and any associated validation and business rules to ensure data consistency and integrity.

	Commands. Commands are used to encapsulate application functionality in a way that allows them to be defined and tested independently of the application’s UI. They can be defined as command objects or as command methods in the view model. Prism provides the - - - DelegateCommand class and the CompositeCommand class. The latter is used to represent a collection of commands which are all invoked together.

	Regions. Regions are logical placeholders defined within the application’s UI (in the shell or within views) into which views are displayed. Regions allow the layout of the application’s UI to be updated without requiring changes to the application logic. Many common controls can be used as a region, allowing views to be automatically displayed within controls, such as a ContentControl, ItemsControl, ListBox, or TabControl. Views can be displayed within a region programmatically or automatically. Prism also provides support for implementing navigation with regions. Regions can be located by other components through the RegionManager component, which uses RegionAdapter and RegionBehavior components to coordinate the display of views within specific regions.

	Navigation. Navigation is defined as the process by which the application coordinates changes to its UI as a result of the user’s interaction with the application or internal application state changes. Prism supports two styles of navigation: state-based navigation, where the state of an existing view is updated to implement simple navigation scenarios, and view-switching navigation, where new views are created and old views replaced within the application’s UI. View-switching navigation uses a Uniform Resource Identifier (URI)–based navigation mechanism in conjunction with Prism regions to allow flexible navigation schemes to be implemented.

	EventAggregator. Components in a composite application often need to communicate with other components and services in the application in a loosely coupled way. To support this, Prism provides the EventAggregator component, which implements a pub-sub event mechanism, thereby allowing components to publish events and other components to subscribe to those events without either of them requiring a reference to the other. The EventAggregator is often used to allow components defined in different modules to communicate with each other.

	Dependency injection container. The Dependency Injection (DI) pattern is used throughout Prism to allow the dependencies between components to be managed. Dependency injection allows component dependencies to be fulfilled at run time, and it supports extensibility and testability. Prism is designed to work with Unity or MEF, or with any other dependency injection containers via the ServiceLocator.

	Services. Services are components that encapsulate non-UI related functionality, such as logging, exception management, and data access. Services can be defined by the application or within a module. Services are often registered with the dependency injection container so that they can be located or constructed as required and used by other components that depend on them.

	Controllers. Controllers are classes that are used to coordinate the construction and initialization of views that are to be displayed in a region within the application’s UI. Controllers encapsulate the presentation logic that determines which views are to be displayed. The controller will use Prism’s view-switching navigation mechanism, which provides an extensible URI-based navigation mechanism to coordinate the construction and placement of views within regions. The Application Controller pattern defines an abstraction that maps to this responsibility.

	Bootstrapper. The Bootstrapper component is used by the application to initialize the various Prism components and services. It is used to initialize the dependency injection container to register any application-level components and services with it. It is also used to configure and initialize the module catalog and the shell’s view and view model or presenter.

Prism is designed so that you can use any of the preceding capabilities and design patterns individually, or all together, depending on your requirements and your application scenario. You can use the MVVM pattern, modularity, regions, commands, or events in any combination without having to adopt all of them. Of course, if you want to take full advantage of the benefits that separation of concerns and loose coupling offers, you will typically use many of Prism’s capabilities and design patterns in conjunction with each other. The following illustration shows a typical Prism application architecture and shows how all the various capabilities of Prism can work together within a multi-module composite application.

[image: Typical Prism application architecture]

Typical composite application architecture with the Prism Library

Most Prism applications consist of a shell application that defines regions for displaying top-level views and shared services that can be accessed by the loaded modules. The shell defines a suitable catalog to specify which modules are to be loaded at startup time , as appropriate. A dependency injection container is also defined, which allows component dependencies to be fulfilled at run time. Shared services and components are registered with the container by the Bootstrapper when the application starts.

Individual modules encapsulate a portion of the overall application’s functionality and, using a separated presentation pattern such as MVVM, define views, view models, models, and service components. When the modules are loaded, views defined within the modules are displayed within the regions defined by the shell. After initialization completes, the user then navigates within the application using state-based or view-switching navigation to coordinate the visual update or display of new views within the application’s regions.

Using Prism

Now that you’ve seen the major capabilities and design patterns that Prism supports, it’s time to see how easily you can start to use Prism when developing a new application. This section provides an overview of the first few steps required to create a basic Prism application. You can extend this basic application to leverage the additional capabilities and design patterns provided by Prism, as required by your scenario.

Note: Although the Prism Library can be easily used to build new composite WPF applications, you can also use Prism with existing applications that want to take advantage of one or more Prism capabilities or design patterns.

A Prism application typically consists of a shell project and multiple module projects. The following illustration shows common activities needed when developing a composite application using the Prism Library.

[image: Activities for creating a composite application]

Activities for creating a composite application

A typical Prism application leverages most or all of the Prism capabilities and design patterns described earlier to be able to fully realize the benefits of the loose coupling and separation of concerns architectural design principles. However, for this example, the steps required to create a basic Prism application that consists of a single module that defines a single view are described.

Note: Most of your projects will need to reference the Prism Library assemblies. Prism provides signed binaries through NuGet packages so that you can use the Visual Studio Manage NuGet Packages dialog box to add references to them. You can also include the Prism Library projects in your solution and then use project references to them. The latter has the advantage of being able to use features like Go To Definition to step down into the Prism types, as well as being able to build and sign the Prism Library assemblies with your own strong name or certificate as part of your build process.

Define the Shell

The application shell provides the basic layout for the application. This layout is defined using regions that modules can use to place views. Views, like shells, can use regions to define discoverable areas that content can be added to, as shown in the following illustration. Shells typically set the appearance for the entire application and contain the styles that are used throughout the application.

[image: Shells, views, and regions]

Create the Bootstrapper

The bootstrapper is the glue that connects the application with the Prism Library services and the Unity or MEF containers. Each application creates an application-specific bootstrapper, which typically inherits from either UnityBootstrapper or MefBootstrapper, as shown in the following illustration. You will need to decide the approach you want to use to populate the module catalog. Minimally, each application will provide a module catalog and a shell.

By default, the bootstrapper logs events using the .NET Framework Trace class. Most applications will want to supply their own logging services, such as Enterprise Library logging. Applications can supply their logging service in their bootstrapper.

By default, the UnityBootstrapper and MefBootstrapper enable the Prism Library services. These can be disabled or replaced in your application-specific bootstrapper.

[image: Connecting to the Prism Library]

Diagram demonstrating connecting to the Prism Library.

Create the Module

The module contains the views and services specific to a piece of the application’s functionality. Frequently, these are contained in separate assemblies and developed by separate teams. A module is denoted by a class that implements the IModule interface. These modules, during initialization, register their views and services and may add one or more views to the shell. Depending on your module discovery approach, you may need to apply attributes to your module classes or define dependencies between your modules.

Add a Module View to the Shell

Modules take advantage of the shell’s regions for placing content. During initialization, modules use the RegionManager to locate regions in the shell and add one or more views to those regions or register one or more view types to be created within those regions. The RegionManager is responsible for keeping track of regions throughout the application and is a core service initialized from the bootstrapper.

The remaining topics in the documentation provide details about Prism key concepts.

 Implementing the MVVM Pattern Using the Prism Library for WPF

Implementing the MVVM Pattern Using the Prism Library for WPF

The Model-View-ViewModel (MVVM) pattern helps you to cleanly separate the business and presentation logic of your application from its user interface (UI). Maintaining a clean separation between application logic and UI helps to address numerous development and design issues and can make your application much easier to test, maintain, and evolve. It can also greatly improve code re-use opportunities and allows developers and UI designers to more easily collaborate when developing their respective parts of the application.

Using the MVVM pattern, the UI of the application and the underlying presentation and business logic is separated into three separate classes: the view, which encapsulates the UI and UI logic; the view model, which encapsulates presentation logic and state; and the model, which encapsulates the application’s business logic and data.

Prism includes samples and reference implementations that show how to implement the MVVM pattern in a Windows Presentation Foundation (WPF) application. The Prism Library also provides features that can help you implement the pattern in your own applications. These features embody the most common practices for implementing the MVVM pattern and are designed to support testability and to work well with Expression Blend and Visual Studio.

This topic provides an overview of the MVVM pattern and describes how to implement its fundamental characteristics. The topic Advanced MVVM Scenarios describes how to implement more advanced MVVM scenarios using the Prism Library.

Class Responsibilities and Characteristics

The MVVM pattern is a close variant of the Presentation Model pattern, optimized to leverage some of the core capabilities of WPF , such as data binding, data templates, commands, and behaviors.

In the MVVM pattern, the view encapsulates the UI and any UI logic, the view model encapsulates presentation logic and state, and the model encapsulates business logic and data. The view interacts with the view model through data binding, commands, and change notification events. The view model queries, observes, and coordinates updates to the model, converting, validating, and aggregating data as necessary for display in the view.

The following illustration shows the three MVVM classes and their interaction.

[image: MVVM classes and their interactions]

The MVVM classes and their interactions

Like with all separated presentation patterns, the key to using the MVVM pattern effectively lies in understanding the appropriate way to factor your application’s code into the correct classes, and in understanding the ways in which these classes interact in various scenarios. The following sections describe the responsibilities and characteristics of each of the classes in the MVVM pattern.

The View Class

The view’s responsibility is to define the structure and appearance of what the user sees on the screen. Ideally, the code-behind of a view contains only a constructor that calls the InitializeComponent method. In some cases, the code-behind may contain UI logic code that implements visual behavior that is difficult or inefficient to express in Extensible Application Markup Language (XAML), such as complex animations, or when the code needs to directly manipulate visual elements that are part of the view. You should not put any logic code in the view that you need to unit test. Typically, logic code in the view’s code-behind will be tested via a UI automation testing approach.

In WPF, data binding expressions in the view are evaluated against its data context. In MVVM, the view’s data context is set to the view model. The view model implements properties and commands to which the view can bind and notifies the view of any changes in state through change notification events. There is typically a one-to-one relationship between a view and its view model.

Typically, views are Control-derived or UserControl-derived classes. However, in some cases, the view may be represented by a data template, which specifies the UI elements to be used to visually represent an object when it is displayed. Using data templates, a visual designer can easily define how a view model will be rendered or can modify its default visual representation without changing the underlying object itself or the behavior of the control that is used to display it.

Data templates can be thought of as views that do not have any code-behind. They are designed to bind to a specific view model type whenever one is required to be displayed in the UI. At run time, the view, as defined by the data template, will be automatically instantiated and its data context set to the corresponding view model.

In WPF, you can associate a data template with a view model type at the application level. WPF will then automatically apply the data template to any view model objects of the specified type whenever they are displayed in the UI. This is known as implicit data templating. The data template can be defined in-line with the control that uses it or in a resource dictionary outside the parent view and declaratively merged into the view’s resource dictionary.

To summarize, the view has the following key characteristics:

	The view is a visual element, such as a window, page, user control, or data template. The view defines the controls contained in the view and their visual layout and styling.

	The view references the view model through its DataContext property. The controls in the view are data bound to the properties and commands exposed by the view model.

	The view may customize the data binding behavior between the view and the view model. For example, the view may use value converters to format the data to be displayed in the UI, or it may use validation rules to provide additional input data validation to the user.

	The view defines and handles UI visual behavior, such as animations or transitions that may be triggered from a state change in the view model or via the user’s interaction with the UI.

	The view’s code-behind may define UI logic to implement visual behavior that is difficult to express in XAML or that requires direct references to the specific UI controls defined in the view.

The View Model Class

The view model in the MVVM pattern encapsulates the presentation logic and data for the view. It has no direct reference to the view or any knowledge about the view’s specific implementation or type. The view model implements properties and commands to which the view can data bind and notifies the view of any state changes through change notification events. The properties and commands that the view model provides define the functionality to be offered by the UI, but the view determines how that functionality is to be rendered.

The view model is responsible for coordinating the view’s interaction with any model classes that are required. Typically, there is a one-to many-relationship between the view model and the model classes. The view model may choose to expose model classes directly to the view so that controls in the view can data bind directly to them. In this case, the model classes will need to be designed to support data binding and the relevant change notification events. For more information about this scenario, see the section, Data Binding, later in this topic.

The view model may convert or manipulate model data so that it can be easily consumed by the view. The view model may define additional properties to specifically support the view; these properties would not normally be part of (or cannot be added to) the model. For example, the view model may combine the value of two fields to make it easier for the view to present, or it may calculate the number of characters remaining for input for fields with a maximum length. The view model may also implement data validation logic to ensure data consistency.

The view model may also define logical states the view can use to provide visual changes in the UI. The view may define layout or styling changes that reflect the state of the view model. For example, the view model may define a state that indicates that data is being submitted asynchronously to a web service. The view can display an animation during this state to provide visual feedback to the user.

Typically, the view model will define commands or actions that can be represented in the UI and that the user can invoke. A common example is when the view model provides a Submit command that allows the user submit data to a web service or to a data repository. The view may choose to represent that command with a button so that the user can click the button to submit the data. Typically, when the command becomes unavailable, its associated UI representation becomes disabled. Commands provide a way to encapsulate user actions and to cleanly separate them from their visual representation in the UI.

To summarize, the view model has the following key characteristics:

	The view model is a non-visual class and does not derive from any WPF base class. It encapsulates the presentation logic required to support a use case or user task in the application. The view model is testable independently of the view and the model.

	The view model typically does not directly reference the view. It implements properties and commands to which the view can data bind. It notifies the view of any state changes via change notification events via the INotifyPropertyChanged and INotifyCollectionChanged interfaces.

	The view model coordinates the view’s interaction with the model. It may convert or manipulate data so that it can be easily consumed by the view and may implement additional properties that may not be present on the model. It may also implement data validation via the IDataErrorInfo or INotifyDataErrorInfo interfaces.

	The view model may define logical states that the view can represent visually to the user.

Note: View or View Model?
Many times, determining where certain functionality should be implemented is not obvious. The general rule of thumb is: Anything concerned with the specific visual appearance of the UI on the screen and that could be re-styled later (even if you are not currently planning to re-style it) should go into the view; anything that is important to the logical behavior of the application should go into the view model. In addition, because the view model should have no explicit knowledge of the specific visual elements in the view, code to programmatically manipulate visual elements within the view should reside in the view’s code-behind or be encapsulated in a behavior. Similarly, code to retrieve or manipulate data items that are to be displayed in the view through data binding should reside in the view model.

The Model Class

The model in the MVVM pattern encapsulates business logic and data. Business logic is defined as any application logic that is concerned with the retrieval and management of application data and for making sure that any business rules that ensure data consistency and validity are imposed. To maximize re-use opportunities, models should not contain any use case–specific or user task–specific behavior or application logic.

Typically, the model represents the client-side domain model for the application. It can define data structures based on the application’s data model and any supporting business and validation logic. The model may also include the code to support data access and caching, though typically a separate data repository or service is employed for this. Often, the model and data access layer are generated as part of a data access or service strategy, such as the ADO.NET Entity Framework, WCF Data Services, or WCF RIA Services.

Typically, the model implements the facilities that make it easy to bind to the view. This usually means it supports property and collection changed notification through the INotifyPropertyChanged and INotifyCollectionChanged interfaces. Models classes that represent collections of objects typically derive from the ObservableCollection<

T>

 class, which provides an implementation of the INotifyCollectionChanged interface.

The model may also support data validation and error reporting through the IDataErrorInfo (or INotifyDataErrorInfo) interfaces. The IDataErrorInfo and INotifyDataErrorInfo interfaces allow WPF data binding to be notified when values change so that the UI can be updated. They also enable support for data validation and error reporting in the UI layer.

Note: What if your model classes do not implement the required interfaces?
Sometimes you will need to work with model objects that do not implement the INotifyPropertyChanged, INotifyCollectionChanged, IDataErrorInfo, or INotifyDataErrorInfo interfaces. In those cases, the view model may need to wrap the model objects and expose the required properties to the view. The values for these properties will be provided directly by the model objects. The view model will implement the required interfaces for the properties it exposes so that the view can easily data bind to them.

The model has the following key characteristics:

	Model classes are non-visual classes that encapsulate the application’s data and business logic. They are responsible for managing the application’s data and for ensuring its consistency and validity by encapsulating the required business rules and data validation logic.

	The model classes do not directly reference the view or view model classes and have no dependency on how they are implemented.

	The model classes typically provide property and collection change notification events through the INotifyPropertyChanged and INotifyCollectionChanged interfaces. This allows them to be easily data bound in the view. Model classes that represent collections of objects typically derive from the ObservableCollection<

T>

 class.

	The model classes typically provide data validation and error reporting through either the IDataErrorInfo or INotifyDataErrorInfo interfaces.

	The model classes are typically used in conjunction with a service or repository that encapsulates data access and caching.

Class Interactions

The MVVM pattern provides a clean separation between your application’s user interface, its presentation logic, and its business logic and data by separating each into separate classes. Therefore, when you implement MVVM, it is important to factor in your application’s code to the correct classes, as described in the previous section.

Well-designed view, view model, and model classes will not only encapsulate the correct type of code and behavior; they will also be designed so that they can easily interact with each other via data binding, commands, and data validation interfaces.

The interactions between the view and its view model are perhaps the most important to consider, but the interactions between the model classes and the view model are also important. The following sections describe the various patterns for these interactions and describe how to design for them when implementing the MVVM pattern in your applications.

Data Binding

Data binding plays a very important role in the MVVM pattern. WPF provides powerful data binding capabilities. Your view model and (ideally) your model classes should be designed to support data binding so that they can take advantage of these capabilities. Typically, this means that they must implement the correct interfaces.

WPF data binding supports multiple data binding modes. With one-way data binding, UI controls can be bound to a view model so that they reflect the value of the underlying data when the display is rendered. Two-way data binding will also automatically update the underlying data when the user modifies it in the UI.

To ensure that the UI is kept up to date when the data changes in the view model, it should implement the appropriate change notification interface. If it defines properties that can be data bound, it should implement the INotifyPropertyChanged interface. If the view model represents a collection, it should implement the INotifyCollectionChanged interface or derive from the ObservableCollection<

T>

 class that provides an implementation of this interface. Both of these interfaces define an event that is raised whenever the underlying data is changed. Any data bound controls will be automatically updated when these events are raised.

In many cases, a view model will define properties that return objects (and which, in turn, may define properties that return additional objects). WPF data binding supports binding to nested properties via the Path property. Therefore, it is very common for a view’s view model to return references to other view model or model classes. All view model and model classes accessible to the view should implement the INotifyPropertyChanged or INotifyCollectionChanged interfaces, as appropriate.

The following sections describe how to implement the required interfaces in order to support data binding within the MVVM pattern.

Implementing INotifyPropertyChanged

Implementing the INotifyPropertyChanged interface in your view model or model classes allows them to provide change notifications to any data-bound controls in the view when the underlying property value changes. Implementing this interface is straightforward, as shown in the following code example.

public class Questionnaire : INotifyPropertyChanged
{
 private string favoriteColor;
 public event PropertyChangedEventHandler PropertyChanged;
 ...
 public string FavoriteColor
 {
 get { return this.favoriteColor; }
 set
 {
 if (value != this.favoriteColor)
 {
 this.favoriteColor = value;

 var handler = this.PropertyChanged;
 if (handler != null)
 {
 handler(this,
 new PropertyChangedEventArgs("FavoriteColor"));
 }
 }
 }
 }
}

Implementing the INotifyPropertyChanged interface on many view model classes can be repetitive and error-prone because of the need to specify the property name in the event argument. The Prism Library provides the BindableBase base class from which you can derive your view model classes that implements the INotifyPropertyChanged interface in a type-safe manner, as shown here.

public abstract class BindableBase : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;
 ...
 protected virtual bool SetProperty<T>(ref T storage, T value,
 [CallerMemberName] string propertyName = null)
 {...}
 protected void OnPropertyChanged<T>(
 Expression<Func<T>> propertyExpression)
 {...}

 protected void OnPropertyChanged(string propertyName)
 {...}
}

A derived view model class can raise the property change event in the setter by calling the SetProperty method. The SetProperty method checks whether the backing field is different from the value being set. If different, the backing field is updated and the PropertyChanged event is raised.

The following code example shows how to set the property and simultaneously signal the change of another property by using a lambda expression in the OnPropertyChanged method. This example comes from the Stock Trader RI. The TransactionInfo and TickerSymbol properties are related. If the TransactionInfo property changes, the TickerSymbol will also likely be updated. By calling OnPropertyChanged for the TickerSymbol property in the setter of the TransactionInfo property, two PropertyChanged events will be raised, one for TransactionInfo and one for TickerSymbol.

public TransactionInfo TransactionInfo
{
 get { return this.transactionInfo; }
 set
 {
 SetProperty(ref this.transactionInfo, value);
 this.OnPropertyChanged(() => this.TickerSymbol);
 }
}

Note: Using a lambda expression in this way involves a small performance cost because the lambda expression has to be evaluated for each call. The benefit is that this approach provides compile-time type safety and refactoring support if you rename a property. Although the performance cost is small and would not normally impact your application, the costs can accrue if you have many change notifications. In this case, you should consider using the non-lambda method overload.

Often, your model or view model will include properties whose values are calculated from other properties in the model or view model. When handling changes to properties, be sure to also raise notification events for any calculated properties.

Implementing INotifyCollectionChanged

Your view model or model class may represent a collection of items, or it may define one or more properties that return a collection of items. In either case, it is likely that you will want to display the collection in an ItemsControl, such as a ListBox, or in a DataGrid control in the view. These controls can be data bound to a view model that represents a collection or to a property that returns a collection via the ItemSource property.

 <DataGrid ItemsSource="{Binding Path=LineItems}" />

To properly support change notification requests, the view model or model class, if it represents a collection, should implement the INotifyCollectionChanged interface (in addition to the INotifyPropertyChanged interface). If the view model or model class defines a property that returns a reference to a collection, the collection class returned should implement the INotifyCollectionChanged interface.

However, implementing the INotifyCollectionChanged interface can be challenging because it has to provide notifications when items are added, removed, or changed within the collection. Instead of directly implementing the interface, it is often easier to use or derive from a collection class that already implements it. The ObservableCollection<

T>

 class provides an implementation of this interface and is commonly used as either a base class or to implement properties that represent a collection of items.

If you need to provide a collection to the view for data binding, and you do not need to track the user’s selection or to support filtering, sorting, or grouping of the items in the collection, you can simply define a property on your view model that returns a reference to the ObservableCollection<

T>

 instance.

public class OrderViewModel : BindableBase
{
 public OrderViewModel(IOrderService orderService)
 {
 this.LineItems = new ObservableCollection<OrderLineItem>(
 orderService.GetLineItemList());
 }

 public ObservableCollection<OrderLineItem> LineItems { get; private set; }
}

If you obtain a reference to a collection class (for example, from another component or service that does not implement INotifyCollectionChanged), you can often wrap that collection in an ObservableCollection<

T>

 instance using one of the constructors that take an IEnumerable<

T>

 or List<

T>

 parameter.

Note: BindableBase can be found in the Prism.Mvvm namespace which is located in the Prism.Core NuGet package.

Implementing ICollectionView

The preceding code example shows how to implement a simple view model property that returns a collection of items that can be displayed via data bound controls in the view. Because the ObservableCollection<

T>

 class implements the INotifyCollectionChanged interface, the controls in the view will be automatically updated to reflect the current list of items in the collection as items are added or removed.

However, you will often need to more finely control how the collection of items is displayed in the view, or track the user’s interaction with the displayed collection of items, from within the view model itself. For example, you may need to allow the collection of items to be filtered or sorted according to presentation logic implemented in the view model, or you may need to keep track of the currently selected item in the view so that commands implemented in the view model can act on the currently selected item.

WPF supports these scenarios by providing various classes that implement the ICollectionView interface. This interface provides properties and methods to allow a collection to be filtered, sorted, or grouped, and allow the currently selected item to be tracked or changed. WPF provides an implementation of this interface using the ListCollectionView class.

Collection view classes work by wrapping an underlying collection of items so that they can provide automatic selection tracking and sorting, filtering, and paging for them. An instance of these classes can be created programmatically or declaratively in XAML using the CollectionViewSource class.

Note: In WPF, a default collection view will actually be automatically created whenever a control is bound to a collection.

Collection view classes can be used by the view model to keep track of important state information for the underlying collection, while maintaining a clean separation of concerns between the UI in the view and the underlying data in the model. In effect, CollectionViews are view models that are designed specifically to support collections.

Therefore, if you need to implement filtering, sorting, grouping, or selection tracking of items in the collection from within your view model, your view model should create an instance of a collection view class for each collection to be exposed to the view. You can then subscribe to selection changed events, such as the CurrentChanged event, or control filtering, sorting, or grouping using the methods provided by the collection view class from within your view model.

The view model should implement a read-only property that returns an ICollectionView reference so that controls in the view can data bind to the collection view object and interact with it. All WPF controls that derive from the ItemsControl base class can automatically interact with ICollectionView classes.

The following code example shows the use of the ListCollectionView in WPF to keep track of the currently selected customer.

public class MyViewModel : BindableBase
{
 public ICollectionView Customers { get; private set; }

 public MyViewModel(ObservableCollection<Customer> customers)
 {
 // Initialize the CollectionView for the underlying model
 // and track the current selection.
 Customers = new ListCollectionView(customers);

 Customers.CurrentChanged +=SelectedItemChanged;
 }

 private void SelectedItemChanged(object sender, EventArgs e)
 {
 Customer current = Customers.CurrentItem as Customer;
 ...
 }
 ...
}

In the view, you can then bind an ItemsControl, such as a ListBox, to the Customers property on the view model via its ItemsSource property, as shown here.

<ListBox ItemsSource="{Binding Path=Customers}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel>
 <TextBlock Text="{Binding Path=Name}"/>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

When the user selects a customer in the UI, the view model will be informed so that it can apply the commands that relate to the currently selected customer. The view model can also programmatically change the current selection in the UI by calling methods on the collection view object, as shown in the following code example.

Customers.MoveCurrentToNext();

When the selection changes in the collection view, the UI automatically updates to visually represent the selected state of the item.

Commands

In addition to providing access to the data to be displayed or edited in the view, the view model will likely define one or more actions or operations that can be performed by the user. In WPF, actions or operations that the user can perform through the UI are typically defined as commands. Commands provide a convenient way to represent actions or operations that can be easily bound to controls in the UI. They encapsulate the actual code that implements the action or operation and help to keep it decoupled from its actual visual representation in the view.

Commands can be visually represented and invoked in many different ways by the user as they interact with the view. In most cases, they are invoked as a result of a mouse click, but they can also be invoked as a result of shortcut key presses, touch gestures, or any other input events. Controls in the view are data bound to the view model’s commands so that the user can invoke them using whatever input event or gesture the control defines. Interaction between the UI controls in the view and the command can be two-way. In this case, the command can be invoked as the user interacts with the UI, and the UI can be automatically enabled or disabled as the underlying command becomes enabled or disabled.

The view model can implement commands as either a Command Method or as a Command Object (an object that implements the ICommand interface). In either case, the view’s interaction with the command can be defined declaratively without requiring complex event handling code in the view’s code-behind file. For example, certain controls in WPF inherently support commands and provide a Command property that can be data bound to an ICommand object provided by the view model. In other cases, a command behavior can be used to associate a control with a command method or command object provided by the view model.

Note: Behaviors are a powerful and flexible extensibility mechanism that can be used to encapsulate interaction logic and behavior that can then be declaratively associated with controls in the view. Command behaviors can be used to associate command objects or methods with controls that were not specifically designed to interact with commands.

The following sections describe how to implement commands in your view, as command methods or as command objects, and how to associate them with controls in the view.

Implementing a Task-Based Delegate Command

There are a number of scenarios where the command calls code with long running transactions that cannot block the UI thread. For these scenarios you should use the FromAsyncHandler method of the DelegateCommand class, which creates a new instance of the DelegateCommand from an async handler method.

// DelegateCommand.cs
public static DelegateCommand FromAsyncHandler(Func<Task> executeMethod, Func<bool> canExecuteMethod)
{
 return new DelegateCommand(executeMethod, canExecuteMethod);
}

For example, the following code shows how a DelegateCommand instance, which represents a sign in command, is constructed by specifying delegates to the SignInAsync and CanSignIn view model methods. The command is then exposed to the view through a read-only property that returns a reference to an ICommand [http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx].

// SignInFlyoutViewModel.cs
public DelegateCommand SignInCommand { get; private set; }

...
SignInCommand = DelegateCommand.FromAsyncHandler(SignInAsync, CanSignIn);

Implementing Command Objects

A command object is an object that implements the ICommand interface. This interface defines an Execute method, which encapsulates the operation itself, and a CanExecute method, which indicates whether the command can be invoked at a particular time. Both of these methods take a single argument as the parameter for the command. The encapsulation of the implementation logic for an operation in a command object means it can be more easily unit tested and maintained.

Implementing the ICommand interface is straightforward. However, there are a number of implementations of this interface that you can readily use in your application. For example, you can use the ActionCommand class from the Blend for Visual Studio SDK or the DelegateCommand class provided by Prism.

Note: DelegateCommand can be found in the Prism.Commands namespace which is located in the Prism.Core NuGet package.

The Prism DelegateCommand class encapsulates two delegates that each reference a method implemented within your view model class. It inherits from the DelegateCommandBase class, which implements the ICommand interface’s Execute and CanExecute methods by invoking these delegates. You specify the delegates to your view model methods in the DelegateCommand class constructor, which is defined as follows.

// DelegateCommand.cs
public class DelegateCommand<T> : DelegateCommandBase
{
 public DelegateCommand(Action<T> executeMethod,Func<T,bool> canExecuteMethod): base((o) => executeMethod((T)o), (o) => canExecuteMethod((T)o))
 {
 ...
 }
}

For example, the following code example shows how a DelegateCommand instance, which represents a Submit command, is constructed by specifying delegates to the OnSubmit and CanSubmit view model methods. The command is then exposed to the view via a read-only property that returns a reference to an ICommand.

public class QuestionnaireViewModel
{
 public QuestionnaireViewModel()
 {
 this.SubmitCommand = new DelegateCommand<object>(
 this.OnSubmit, this.CanSubmit);
 }

 public ICommand SubmitCommand { get; private set; }

 private void OnSubmit(object arg) {...}
 private bool CanSubmit(object arg) { return true; }
}

When the Execute method is called on the DelegateCommand object, it simply forwards the call to the method in your view model class via the delegate that you specified in the constructor. Similarly, when the CanExecute method is called, the corresponding method in your view model class is called. The delegate to the CanExecute method in the constructor is optional. If a delegate is not specified, DelegateCommand will always return true for CanExecute.

The DelegateCommand class is a generic type. The type argument specifies the type of the command parameter passed to the Execute and CanExecute methods. In the preceding example, the command parameter is of type object. A non-generic version of the DelegateCommand class is also provided by Prism for use when a command parameter is not required.

The view model can indicate a change in the command’s CanExecute status by calling the RaiseCanExecuteChanged method on the DelegateCommand object. This causes the CanExecuteChanged event to be raised. Any controls in the UI that are bound to the command will update their enabled status to reflect the availability of the bound command.

Other implementations of the ICommand interface are available. The ActionCommand class provided by the Expression Blend SDK is similar to Prism’s DelegateCommand class described earlier, but it supports only a single Execute method delegate. Prism also provides the CompositeCommand class, which allows DelegateCommands to be grouped together for execution. For more information about using the CompositeCommand class, see “Composite Commands” in “Advanced MVVM Scenarios.”

Invoking Command Objects from the View

There are a number of ways in which a control in the view can be associated with a command object proffered by the view model. Certain WPF controls, notably ButtonBase derived controls, such as Button or RadioButton, and Hyperlink, or MenuItem derived controls, can be easily data bound to a command object through the Command property. WPF also supports binding view model ICommand to a KeyGesture.

<Button Command="{Binding Path=SubmitCommand}" CommandParameter="SubmitOrder"/>

A command parameter can also be optionally defined using the CommandParameter property. The type of the expected argument is specified in the Execute and CanExecute target methods. The control will automatically invoke the target command when the user interacts with that control, and the command parameter, if provided, will be passed as the argument to the command’s Execute method. In the preceding example, the button will automatically invoke the SubmitCommand when it is clicked. Additionally, if a CanExecute handler is specified, the button will be automatically disabled if CanExecute returns false, and it will be enabled if it returns true.

An alternative approach is to use Blend for Visual Studio 2013 interaction triggers and InvokeCommandAction behavior. For more information on InvokeCommandAction behavior and associating commands to events see “Interaction Triggers and Commands” in “Advanced MVVM Scenarios.”

Data Validation and Error Reporting

Your view model or model will often be required to perform data validation and to signal any data validation errors to the view so that the user can act to correct them.

WPF provides support for managing data validation errors that occur when changing individual properties that are bound to controls in the view. For single properties that are data-bound to a control, the view model or model can signal a data validation error within the property setter by rejecting an incoming bad value and throwing an exception. If the ValidatesOnExceptions property on the data binding is true, the data binding engine in WPF will handle the exception and display a visual cue to the user that there is a data validation error.

However, throwing exceptions with properties in this way should be avoided where possible. An alternative approach is to implement the IDataErrorInfo or INotifyDataErrorInfo interfaces on your view model or model classes. These interfaces allow your view model or model to perform data validation for one or more property values and to return an error message to the view so that the user can be notified of the error.

Implementing IDataErrorInfo

The IDataErrorInfo interface provides basic support for property data validation and error reporting. It defines two read-only properties: an indexer property, with the property name as the indexer argument, and an Error property. Both properties return a string value.

The indexer property allows the view model or model class to provide an error message specific to the named property. An empty string or null return value indicates to the view that the changed property value is valid. The Error property allows the view model or model class to provide an error message for the entire object. Note, however, that this property is not currently called by the WPF data binding engine.

The IDataErrorInfo indexer property is accessed when a data-bound property is first displayed, and whenever it is subsequently changed. Because the indexer property is called for all properties that change, you should be careful to ensure that data validation is as fast and as efficient as possible.

When binding controls in the view to properties you want to validate through the IDataErrorInfo interface, set the ValidatesOnDataErrors property on the data binding to true. This will ensure that the data binding engine will request error information for the data-bound property.

<TextBox
 Text="{Binding Path=CurrentEmployee.Name, Mode=TwoWay, ValidatesOnDataErrors=True, NotifyOnValidationError=True }"
/>

Implementing INotifyDataErrorInfo

The INotifyDataErrorInfo interface is more flexible than the IDataErrorInfo interface. It supports multiple errors for a property, asynchronous data validation, and the ability to notify the view if the error state changes for an object.

The INotifyDataErrorInfo interface defines a HasErrors property, which allows the view model to indicate whether an error (or multiple errors) for any properties exist, and a GetErrors method, which allows the view model to return a list of error messages for a particular property.

The INotifyDataErrorInfo interface also defines an ErrorsChanged event. This supports asynchronous validation scenarios by allowing the view or view model to signal a change in error state for a particular property through the ErrorsChanged event. Property values can be changed in a number of ways, and not just via data binding—for example, as a result of a web service call or background calculation. The ErrorsChanged event allows the view model to inform the view of an error once a data validation error has been identified.

To support INotifyDataErrorInfo, you will need to maintain a list of errors for each property. The Model-View-ViewModel Reference Implementation (MVVM RI) demonstrates one way to do this using an ErrorsContainer collection class that tracks all the validation errors in the object. It also raises notification events if the error list changes. The following code example shows a DomainObject (a root model object) and shows an example implementation of INotifyDataErrorInfo using the ErrorsContainer class.

public abstract class DomainObject : INotifyPropertyChanged,
 INotifyDataErrorInfo
{
 private ErrorsContainer<ValidationResult> errorsContainer =
 new ErrorsContainer<ValidationResult>(
 pn => this.RaiseErrorsChanged(pn));

 public event EventHandler<DataErrorsChangedEventArgs> ErrorsChanged;

 public bool HasErrors
 {
 get { return this.ErrorsContainer.HasErrors; }
 }

 public IEnumerable GetErrors(string propertyName)
 {
 return this.errorsContainer.GetErrors(propertyName);
 }

 protected void RaiseErrorsChanged(string propertyName)
 {
 var handler = this.ErrorsChanged;
 if (handler != null)
 {
 handler(this, new DataErrorsChangedEventArgs(propertyName));
 }
 }
 ...
}

Construction and Wire-Up

The MVVM pattern helps you to cleanly separate your UI from your presentation and business logic and data, so implementing the right code in the right class is an important first step in using the MVVM pattern effectively. Managing the interactions between the view and view model classes through data binding and commands are also important aspects to consider. The next step is to consider how the view, view model, and model classes are instantiated and associated with each other at run time.

Note: Choosing an appropriate strategy to manage this step is especially important if you are using a dependency injection container in your application. The Managed Extensibility Framework (MEF) and the Unity Application Block (Unity) both provide the ability to specify dependencies between the view, view model, and model classes and to have them fulfilled by the container. For more advanced scenarios, see Advanced MVVM Scenarios.

Typically, there is a one-to-one relationship between a view and its view model. The view and view model are loosely coupled via the view’s data context property; this allows visual elements and behaviors in the view to be data bound to properties, commands, and methods on the view model. You will need to decide how to manage the instantiation of the view and view model classes and their association via the DataContext property at run time.

Care must also be taken when constructing and connecting the view and view model to ensure that loose coupling is maintained. As noted in the previous section, the view model should ideally not depend on any specific implementation of a view. Similarly, the view should ideally not depend on any specific implementation of a view model.

Note: However, it should be noted that the view will implicitly depend on specific properties, commands, and methods on the view model because of the data bindings it defines. If the view model does not implement the required property, command, or method, a run-time exception will be generated by the data binding engine, which will be displayed in the Visual Studio output window during debugging.

There are multiple ways the view and the view model can be constructed and associated at run time. The most appropriate approach for your application will largely depend on whether you create the view or the view model first, and whether you do this programmatically or declaratively. The following sections describe common ways in which the view and view model classes can be created and associated with each other at run time.

Creating the View Model Using XAML

Perhaps the simplest approach is for the view to declaratively instantiate its corresponding view model in XAML. When the view is constructed, the corresponding view model object will also be constructed. You can also specify in XAML that the view model be set as the view’s data context.

<UserControl.DataContext>
 <my:MyViewModel/>
</UserControl.DataContext>

When this view is created, an instance of the MyViewModel is automatically constructed and set as the view’s data context. This approach requires your view model to have a default (parameter-less) constructor.

The declarative construction and assignment of the view model by the view has the advantage that it is simple and works well in design-time tools such as Microsoft Expression Blend or Microsoft Visual Studio. The disadvantage of this approach is that the view has knowledge of the corresponding view model type and that the view model type must have a default constructor.

Creating the View Model Programmatically

Another approach is for the view to instantiate its corresponding view model instance programmatically in its constructor. It can then set it as its data context, as shown in the following code example.

public MyView()
{
 InitializeComponent();
 this.DataContext = new MyViewModel();
}

Creating the View Model Using a View Model Locator

Another way to create a view model instance and associate it with its view is by using a view model locator.

The Prism view model locator has a AutoWireViewModel attached property that when set calls AutoWireViewModelChanged method in the ViewModelLocationProvider class to resolve the view model for the view. By default it uses a convention based approach.

In the Basic MVVM QuickStart, the MainWindow.xaml uses the view model locator to resolve the view model.

<Window x:Class="QuickStart.Views.MainWindow"
 ...
 xmlns:prism="http://prismlibrary.com/"
 prism:ViewModelLocator.AutoWireViewModel="True">

Prism’s ViewModelLocator class has an attached property, AutoWireViewModel that when set to true will try to locate the view model of the view, and then set the view’s data context to an instance of the view model. To locate the corresponding view model, the ViewModelLocationProvider first attempts to resolve the view model from any mappings that may have been registered by the Register method of the ViewModelLocationProvider class. If the view model cannot be resolved using this approach, for instance if the mapping wasn’t created, the ViewModelLocationProvider falls back to a convention-based approach to resolve the correct view model type. This convention assumes that view models are in the same assembly as the view types, that view models are in a .ViewModels child namespace, that views are in a .Views child namespace, and that view model names correspond with view names and end with “ViewModel.”. For instructions on how to change Prism’s View Model Locator convention, see Appendix D: Extending Prism.

Note: ViewModelLocationProvider can be found in the Prism.Mvvm namespace in the Prism.Core NuGet package. ViewModelLocator can be found in the Prism.Mvvm namespace in the Prism.WPF NuGet package.

Creating a View Defined as a Data Template

A view can be defined as a data template and associated with a view model type. Data templates can be defined as resources, or they can be defined inline within the control that will display the view model. The “content” of the control is the view model instance, and the data template is used to visually represent it. WPF will automatically instantiate the data template and set its data context to the view model instance at run time. This technique is an example of a situation in which the view model is instantiated first, followed by the creation of the view.

Data templates are flexible and lightweight. The UI designer can use them to easily define the visual representation of a view model without requiring any complex code. Data templates are restricted to views that do not require any UI logic (code-behind). Microsoft Blend for Visual Studio 2013 can be used to visually design and edit data templates.

The following example shows an ItemsControl that is bound to a list of customers. Each customer object in the underlying collection is a view model instance. The view for the customer is defined by an inline data template. In the following example, the view for each customer view model consists of a StackPanel with a label and text box control bound to the Name property on the view model.

<ItemsControl ItemsSource="{Binding Customers}">
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock VerticalAlignment="Center" Text="Customer Name: " />
 <TextBox Text="{Binding Name}" />
 </StackPanel>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
</ItemsControl>

You can also define a data template as a resource. The following example shows the data template defined a resource and applied to a content control via the StaticResource markup extension.

<UserControl ...>
 <UserControl.Resources>
 <DataTemplate x:Key="CustomerViewTemplate">
 <local:CustomerContactView />
 </DataTemplate>
 </UserControl.Resources>

 <Grid>
 <ContentControl Content="{Binding Customer}"
 ContentTemplate="{StaticResource CustomerViewTemplate}" />
 </Grid>
</UserControl>

Here, the data template wraps a concrete view type. This allows the view to define code-behind behavior. In this way, the data template mechanism can be used to externally provide the association between the view and the view model. Although the preceding example shows the template in the UserControl resources, it would often be placed in application’s resources for reuse.

Key Decisions

When you choose to use the MVVM pattern to construct your application, you will have to make certain design decisions that will be difficult to change later on. Generally, these decisions are application-wide and their consistent use throughout the application will improve developer and designer productivity. The following summarizes the most important decisions when implementing the MVVM pattern:

	Decide on the approach to view and view model construction you will use. You need to decide if your application constructs the views or the view models first and whether to use a dependency injection container, such as Unity or MEF. You will usually want this to be consistent application-wide. For more information, see the section, Construction and Wire-Up, in this topic and the section Advanced Construction and Wire-Up, in Advanced MVVM Scenarios.

	Decide if you will expose commands from your view models as command methods or command objects. Command methods are simple to expose and can be invoked through behaviors in the view. Command objects can neatly encapsulate the command and enabled/disabled logic and can be invoked through behaviors or via the Command property on ButtonBase-derived controls. To make it easier on your developers and designers, it is a good idea to make this an application-wide choice. For more information, see the section, Commands, in this topic.

	Decide how your view models and models will report errors to the view. Your models can either support IDataErrorInfo or INotifyDataErrorInfo. Not all models may need to report error information, but for those that do, it is preferable to have a consistent approach for your developers. For more information, see the section, Data Validation and Error Reporting, in this topic.

	Decide whether Microsoft Blend for Visual Studio 2013 design-time data support is important to your team. If you will use Blend to design and maintain your UI and want to see design time data, make sure that your views and view models offer constructors that do not have parameters and that your views provide a design-time data context. Alternatively, consider using the design-time features provided by Microsoft Blend for Visual Studio 2013 using design-time attributes such as d:DataContext and d:DesignSource. For more information, see Guidelines for Creating Designer Friendly Views in Composing the User Interface.

More Information

For more information about data binding in WPF, see Data Binding [http://msdn.microsoft.com/en-us/library/ms750612.aspx] on MSDN.

For more information about binding to collections in WPF, see Binding to Collections [http://msdn.microsoft.com/en-us/library/ms752347.aspx#binding_to_collections] in Data Binding Overview [http://msdn.microsoft.com/en-us/library/ms752347.aspx] on MSDN.

For more information about the Presentation Model pattern, see Presentation Model [http://www.martinfowler.com/eaaDev/PresentationModel.html] on Martin Fowler’s website.

For more information about data templates, see Data Templating Overview [http://msdn.microsoft.com/en-us/library/ms742521.aspx] on MSDN.

For more information about MEF, see Managed Extensibility Framework Overview [http://msdn.microsoft.com/en-us/library/dd460648.aspx] on MSDN.

For more information about Unity, see Unity Application Block [http://www.msdn.com/unity] on MSDN.

For more information about DelegateCommand and CompositeCommand, see Communicating Between Loosely Coupled Components.

 Prism Library for WPF

Prism Library for WPF

The Prism Library helps architects and developers create composite applications for Windows Presentation Foundation (WPF) using the Model-View-ViewModel pattern. The Prism Library can support those wanting to build a number of application styles with WPF, but it is was primarily constructed for applications composed of discrete, functionally complete pieces that work together to create a single, integrated user interface (UI), often referred to as a composite application. The Prism Library accelerates the development of applications using proven design patterns.

The Prism Library is primarily designed to help architects and developers create applications that need to accomplish the following:

	Build clients composed of independent, yet cooperating, modules or pieces.

	Separate the concerns of module builders from the concerns of the shell developer; by doing this, business units can concentrate on developing domain-specific modules instead of the WPF architecture.

	Separate the concerns of presentation, presentation logic, and application model through support for presentation model patterns such as Model-View-ViewModel (MVVM).

	Use an architectural infrastructure to produce a consistent and high quality integrated application.

When building your application with the Prism Library, you may use the Unity Extensions for the Prism Library and the Unity Application Block (Unity) or the Managed Extensibility Framework (MEF) Extensions for the Prism Library and MEF. These are built on the .NET Framework 4.5 for WPF, as shown in the following illustration.

[image: Positioning of Unity and MEF on top of .NET Framework]

The Prism Library addresses common requirements for building both composite and non-composite applications on the WPF platform. As a whole, the Prism Library accelerates development by providing the services and components to address these needs.

The Prism Library ships signed binaries through NuGet packages to allow you to take advantage of Prism immediately without the need to compile and as source in case you want to make modifications or just see how it works.

Add Reference using NuGet and Accessing the Library Source Code

Add references to the Prism binaries in your code by searching NuGet for Prism. See the list of current Nuget packages.

Organization of the Prism Library

	Prism. This assembly contains the core functionality of Prism that is shared across all supported platforms. This includes:

	MVVM classes such as BindableBase, PropertySupport, ViewModelLocationProvider

	Commanding which includes the DelegateCommand and CompositeCommand..

	Interfaces and components to help send loosely coupled messages between modules. The components include the PubSubEvents and EventAggregator.

	Prism.Wpf. This assembly contains interfaces and components to help build composite applications. These components include the ModuleManager, ModuleCatalog, and Bootstrapper. Additionally, this assembly contains the RegionManager component that helps compose the user interface from multiple parts. It also contains behaviors and actions for interactions with the UI based on Blend for Visual Studio 2013 Behaviors (available in the Blend SDK), largely in support of the MVVM pattern. This includes InteractionRequest, InteractionRequestTrigger, Confirmation, and Notification. Additionally the PopupWindowAction responds to the InteractionRequestTrigger.

	Prism.Unity. This assembly provides components to use the Unity Application Block (Unity) with the Prism Library. These components include UnityBootstrapper and UnityServiceLocatorAdapter.

	Prism.Mef. This assembly provides components to use Managed Extensibility Framework (MEF) with the Prism Library. These components include MefBootstrapper and MefServiceLocatorAdapter.

	Prism.Autofac. This assembly provides components to use the Autofac dependency injection container with the Prism Library. These components include AutofacBootstrapper and AutofacServiceLocatorAdapter.

	Prism.StructureMap. This assembly provides components to use the StructureMap dependency injection container with the Prism Library. These components include StructureMapBootstrapper and StructureMapServiceLocatorAdapter.

	Prism.Ninject. This assembly provides components to use the Ninject dependency injection container with the Prism Library. These components include NinjectBootstrapper and NinjectServiceLocatorAdapter.

The Prism Library Source

The source for Prism, Prism.Wpf, Prism.Unity, Prism.Mef, Prism.Autofac, Prism.StructureMap, and Prism.Ninject assemblies can be found in the PrismLibrary folder where the Prism repo has been forked. These assemblies target WPF applications.

Modifying the Library

If you want to modify the Prism Library, you can replace the NuGet referenced assemblies with your own version of the binaries.

Running the Tests

If you modify the Prism Library and want to verify that existing functionality is not broken, execute the unit tests for the projects. To run all the desktop unit tests in the solution file PrismLibrary.sln, on the Test menu, point to Run, and then click All Tests in Solution.

More Information

Prism’s community sites are:

	Prism: https://github.com/PrismLibrary/Prism.

	Issues: https://github.com/PrismLibrary/Prism/issues.

	Support: http://stackoverflow.com/questions/tagged/prism.

For more information about Unity, see the following:

	“Unity Application Block” on MSDN: http://www.msdn.com/unity.

	Unity community site on CodePlex: http://www.codeplex.com/unity.

For more information about MEF, see the following:

	“Managed Extensibility Framework Overview [http://msdn.microsoft.com/en-us/library/dd460648.aspx]” on MSDN.

	MEF community site on CodePlex: http://mef.codeplex.com/.

For more information about service locator, see the Common Service Locator on CodePlex: http://commonservicelocator.codeplex.com/.

 Advanced MVVM Scenarios Using the Prism Library for WPF

Advanced MVVM Scenarios Using the Prism Library for WPF

The previous topic described how to implement the basic elements of the Model-View-ViewModel (MVVM) pattern by separating your application’s user interface (UI), presentation logic, and business logic into three separate classes (the view, view model, and model), implementing the interactions between those classes (through data binding, commands, and data validation interfaces), and by implementing a strategy to handle construction and wire-up. This topic describes some sophisticated scenarios and describes how the MVVM pattern can support them. The next section describes how commands can be chained together or associated with child views and how they can be extended to support custom requirements. The following sections then describe how to handle asynchronous data requests and subsequent UI interactions and how to handle interaction requests between the view and the view model.

The section, Advanced Construction and Wire-Up, provides guidance on handling construction and wire-up when using a dependency injection container, such as the Unity Application Block (Unity), or when using the Managed Extensibility Framework (MEF). The final section describes how you can test MVVM applications by providing guidance on unit testing your application’s view model and model classes, and on testing behaviors.

Commands

Commands provide a way to separate the command’s implementation logic from its UI representation. Data binding or behaviors provide a way to declaratively associate elements in the view with commands proffered by the view model. The section, Commands in Implementing the MVVM Pattern, described how commands can be implemented as command objects or command methods on the view model, and how they can be invoked from controls in the view by using the built-in Command property provided by certain controls.

WPF Routed Commands: It should be noted that commands implemented as command objects or command methods in the MVVM pattern differ somewhat from WPF’s built-in implementation of commands named routed commands. WPF routed commands deliver command messages by routing them through elements in the UI tree (specifically the logical tree [https://msdn.microsoft.com/en-us/library/ms753391.aspx]). Therefore, command messages are routed up or down the UI tree from the focused element or to an explicitly specified target element; by default, they are not routed to components outside of the UI tree, such as the view model associated with the view. However, WPF-routed commands can use a command handler defined in the view’s code-behind to forward the command call to the view model class.

Composite Commands

In many cases, a command defined by a view model will be bound to controls in the associated view so that the user can directly invoke the command from within the view. However, in some cases, you may want to be able to invoke commands on one or more view models from a control in a parent view in the application’s UI.

For example, if your application allows the user to edit multiple items at the same time, you may want to allow the user to save all the items using a single command represented by a button in the application’s toolbar or ribbon. In this case, the Save All command will invoke each of the Save commands implemented by the view model instance for each item as shown in the following illustration.

[image: SaveAll composite command]

Prism supports this scenario through the CompositeCommand class.

The CompositeCommand class represents a command that is composed from multiple child commands. When the composite command is invoked, each of its child commands is invoked in turn. It is useful in situations where you need to represent a group of commands as a single command in the UI or where you want to invoke multiple commands to implement a logical command.

For example, the CompositeCommand class is used in the Stock Trader Reference Implementation (Stock Trader RI) in order to implement the SubmitAllOrders command represented by the Submit All button in the buy/sell view. When the user clicks the Submit All button, each SubmitCommand defined by the individual buy/sell transactions is executed.

The CompositeCommand class maintains a list of child commands (DelegateCommand instances). The Execute method of the CompositeCommand class simply calls the Execute method on each of the child commands in turn. The CanExecute method similarly calls the CanExecute method of each child command, but if any of the child commands cannot be executed, the CanExecute method will return false. In other words, by default, a CompositeCommand can only be executed when all the child commands can be executed.

Registering and Unregistering Child Commands

Child commands are registered or unregistered using the RegisterCommand and UnregisterCommand methods. In the Stock Trader RI, for example, the Submit and Cancel commands for each buy/sell order are registered with the SubmitAllOrders and CancelAllOrders composite commands, as shown in the following code example (see the OrdersController class).

// OrdersController.cs
commandProxy.SubmitAllOrdersCommand.RegisterCommand(
 orderCompositeViewModel.SubmitCommand);
commandProxy.CancelAllOrdersCommand.RegisterCommand(
 orderCompositeViewModel.CancelCommand);

Note: The preceding commandProxy object provides instance access to the Submit and Cancel composite commands, which are defined statically. For more information, see the class file StockTraderRICommands.cs.

Executing Commands on Active Child Views

Often, your application will need to display a collection of child views within the application’s UI, where each child view will have a corresponding view model that, in turn, may implement one or more commands. Composite commands can be used to represent the commands implemented by child views within the application’s UI and help to coordinate how they are invoked from within the parent view. To support these scenarios, the Prism CompositeCommand and DelegateCommand classes have been designed to work with Prism regions.

Prism regions (described in section, Regions, in Composing the User Interface) provide a way for child views to be associated with logical placeholders in the application’s UI. They are often used to decouple the specific layout of child views from their logical placeholder and its position in the UI. Regions are based on named placeholders that are attached to specific layout controls. The following illustration shows an example where each child view has been added to the region named EditRegion, and the UI designer has chosen to use a Tab control to lay out the views within that region.

[image: Defining the EditRegion using a Tab control]

Composite commands at the parent view level will often be used to coordinate how commands at the child view level are invoked. In some cases, you will want the commands for all shown views to be executed, as in the Save All command example described earlier. In other cases, you will want the command to be executed only on the active view. In this case, the composite command will execute the child commands only on views that are deemed to be active; it will not execute the child commands on views that are not active. For example, you may want to implement a Zoom command on the application’s toolbar or ribbon that causes only the currently active item to be zoomed, as shown in the following diagram.

[image: Executing a CompositeCommand on a single child]

To support this scenario, Prism provides the IActiveAware interface. The IActiveAware interface defines an IsActive property that returns true when the implementer is active, and an IsActiveChanged event that is raised whenever the active state is changed.

You can implement the IActiveAware interface on child views or view models. It is primarily used to track the active state of a child view within a region. Whether or not a view is active is determined by the region adapter that coordinates the views within the specific region control. For the Tab control shown earlier, there is a region adapter that sets the view in the currently selected tab as active, for example.

The DelegateCommand class also implements the IActiveAware interface. The CompositeCommand can be configured to evaluate the active status of child DelegateCommands (in addition to the CanExecute status) by specifying true for the monitorCommandActivity parameter in the constructor. When this parameter is set to true, the CompositeCommand class will consider each child DelegateCommand‘s active status when determining the return value for the CanExecute method and when executing child commands within the Execute method.

When the monitorCommandActivity parameter is true, the CompositeCommand class exhibits the following behavior:

	CanExecute. Returns true only when all active commands can be executed. Child commands that are inactive will not be considered at all.

	Execute. Executes all active commands. Child commands that are inactive will not be considered at all.

You can use this functionality to implement the example described earlier. By implementing the IActiveAware interface on your child view models, you will be notified when your child view becomes active or inactive with the region. When the child view’s active status changes, you can update the active status of the child commands. Then, when the user invokes the Zoom composite command, the Zoom command on the active child view will be invoked.

Commands Within Collections

Another common scenario you will often encounter when displaying a collection of items in a view is when you need the UI for each item in the collection to be associated with a command at the parent view level (instead of the item level).

For example, in the application shown in the following illustration, the view displays a collection of items in a ListBox control, and the data template used to display each item defines a Delete button that allows the user to delete individual items from the collection.

[image: Binding commands within collections]

Because the view model implements the Delete command, the challenge is to wire up the Delete button in the UI for each item, to the Delete command implemented by the view model. The difficulty arises because the data context for each of the items in the ListBox references the item in the collection instead of the parent view model that implements the Delete command.

One approach to this problem is to bind the button in the data template to the command in the parent view using the ElementName binding property to ensure that the binding is relative to the parent control and not relative to the data template. The following XAML illustrates this technique.

<Grid x:Name="root">
 <ListBox ItemsSource="{Binding Path=Items}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Button Content="{Binding Path=Name}"
 Command="{Binding ElementName=root,
 Path=DataContext.DeleteCommand}" />
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
</Grid>

The content of button control in the data template is bound to the Name property on the item in the collection. However, the command for the button is bound via the root element’s data context to the Delete command. This allows the button to be bound to the command at the parent view level instead of at the item level. You can use the CommandParameter property to specify the item to which the command is to be applied, or you can implement the command to operate on the currently selected item (via a CollectionView).

Interaction Triggers and Commands

An alternative approach to commands is to use Blend for Visual Studio 2013 interaction triggers and the InvokeCommandAction action.

<Button Content="Submit" IsEnabled="{Binding CanSubmit}">
 <i:Interaction.Triggers>
 <i:EventTrigger EventName="Click">
 <i:InvokeCommandAction Command="{Binding SubmitCommand}"/>
 </i:EventTrigger>
 </i:Interaction.Triggers>
</Button>

This approach can be used for any control to which you can attach an interaction trigger. It is especially useful if you want to attach a command to a control that does not implement the ICommandSource interface, or when you want to invoke the command on an event other than the default event. Again, if you need to supply parameters for your command, you can use the CommandParameter property.

The following shows how to use the Blend EventTrigger configured to listen to the ListBox’s SelectionChanged event. When this event occurs, the SelectedCommand is invoked by the InvokeCommandAction.

<ListBox ItemsSource="{Binding Items}" SelectionMode="Single">
 <i:Interaction.Triggers>
 <i:EventTrigger EventName="SelectionChanged">
 <i:InvokeCommandAction Command="{Binding SelectedCommand}" />
 </i:EventTrigger>
 </i:Interaction.Triggers>
</ListBox>

Command-Enabled Controls vs. Behaviors

WPF controls that support commands allow you to declaratively hook up a control to a command. These controls will invoke the specified command when the user interacts with the control in a specific way. For example, for a Button control, the command will be invoked when the user clicks the button. This event associated with the command is fixed and cannot be changed.

Behaviors also allow you to hook up a control to a command in a declarative fashion. However, behaviors can be associated with a range of events raised by the control, and they can be used to conditionally invoke an associated command object or a command method in the view model. In other words, behaviors can address many of the same scenarios as command-enabled controls, and they may provide a greater degree of flexibility and control._

You will need to choose when to use command-enabled controls and when to use behaviors, as well as which kind of behavior to use. If you prefer to use a single mechanism to associate controls in the view with functionality in the view model or for consistency, you might consider using behaviors, even for controls that inherently support commands.

If you only need to use command-enabled controls to invoke commands on the view model, and if you are happy with the default events to invoke the command, behaviors may not be required. Similarly, if your developers or UI designers will not be using Blend for Visual Studio 2013, you may favor command-enabled controls (or custom attached behaviors) because of the additional syntax required for Blend behaviors.

Passing EventArgs Parameters to the Command

When you need to invoke a command in response to an event raised by a control located in the view, you can use Prism’s InvokeCommandAction. Prism’s InvokeCommandAction differs from the class of the same name in the Blend SDK in two ways. First, the Prism InvokeCommandAction updates the enabled state of the associated control based on the return value of the command’s CanExecute method. Second, the Prism InvokeCommandAction uses the EventArgs parameter passed to it from the parent trigger, passing it to the associated command if the CommandParameter is not set.

Sometimes you need to pass a parameter to the command that comes from the parent trigger, such as the EventArgs from the EventTrigger. In that scenario you cannot use Blend’s InvokeCommandAction action.

In the following code you can see that Prism’s InvokeCommandAction has a property called TriggerParameterPath that is used to specify the member (possibly nested) of the parameter passed as the command parameter. In the following example, the AddedItems property of the SelectionChanged EventArgs will be passed to the SelectedCommand command.

<ListBox Grid.Row="1" Margin="5" ItemsSource="{Binding Items}" SelectionMode="Single">
 <i:Interaction.Triggers>
 <i:EventTrigger EventName="SelectionChanged">
 <!-- This action will invoke the selected command in the view model and pass the parameters of the event to it. -->
 <prism:InvokeCommandAction Command="{Binding SelectedCommand}" TriggerParameterPath="AddedItems" />
 </i:EventTrigger>
 </i:Interaction.Triggers>
</ListBox>

Handling Asynchronous Interactions

Your view model will often need to interact with services and components within your application that communicate asynchronously instead of synchronously. This is especially true if you interacting with web services or other resources over the network, or if your application uses background tasks to perform calculations or I/O. Performing these operations asynchronously ensures that your application remains responsive which is essential for delivering a good user experience.

When the user initiates an asynchronous request or background task, it is difficult to predict when the response will arrive (or even if it will arrive) and, very often, what thread it will return on. Because the UI can be updated only in the UI thread, you will often need to update the UI by dispatching a request on the UI thread.

Retrieving Data and Interacting with Web Services

When interacting with web services or other remote access technologies, you will often encounter the IAsyncResult pattern. In this pattern, instead of invoking a method, such as GetQuestionnaire, you use the pair of methods BeginGetQuestionnaire and EndGetQuestionnaire. To initiate the asynchronous call, you call BeginGetQuestionnaire. To get the results or determine if there was an exception when invoking the target method, you call EndGetQuestionnaire when the call is complete.

To determine when to call EndGetQuestionnaire, you can either poll for completion or (preferably) specify a callback during the call to BeginGetQuestionnaire. With the callback approach, your callback method will be called when the execution of the target method is complete, allowing you to call EndGetQuestionnaire from there, as shown here.

IAsyncResult asyncResult = this.service.BeginGetQuestionnaire(GetQuestionnaireCompleted, null // object state, not used in this example);

private void GetQuestionnaireCompleted(IAsyncResult result)
{
 try
 {
 questionnaire = this.service.EndGetQuestionnaire(ar);
 }
 catch (Exception ex)
 {
 // Do something to report the error.
 }
}

It is important to note that in the calls to the End method (in this case, EndGetQuestionnaire), any exceptions that occurred during the execution of the request will be raised. Your application must handle these and may need to report them in a thread-safe way via the UI. If you do not handle these, the thread will end and you will not be able to process the results.

Because the response usually is not on the UI thread, if you plan to modify anything that will affect UI state, you will need to dispatch the response to the UI thread using either the thread Dispatcher or the SynchronizationContext objects. In WPF, you will commonly use the dispatcher.

In the following code example, the Questionnaire object is retrieved asynchronously, and then it is set as the data context for the QuestionnaireView. You can use the CheckAccess method of the dispatcher to see whether you are on the UI thread. If you are not, you will need to use the BeginInvoke method to have the request carried out on the UI thread.

var dispatcher = System.Windows.Deployment.Current.Dispatcher;
if (dispatcher.CheckAccess())
{
 QuestionnaireView.DataContext = questionnaire;
}
else
{
 dispatcher.BeginInvoke(
 () => { Questionnaire.DataContext = questionnaire; });
}

The Model-View-ViewModel Reference Implementation (MVVM RI) shows an example of how to consume an IAsyncResult-based service interface similar to the preceding examples. It also wraps the service to provide a simpler callback mechanism for the consumer and handles the dispatch of the callback to the caller’s thread. For example, the following code example shows retrieval of the questionnaire.

this.questionnaireRepository.GetQuestionnaireAsync(
 (result) =>
 {
 this.Questionnaire = result.Result;
 });

The result object returned wraps the result retrieved in addition to errors that may have occurred. The following code example shows how the errors could be evaluated.

this.questionnaireRepository.GetQuestionnaireAsync(
 (result) =>
 {
 if (result.Error == null)
 {
 this.Questionnaire = result.Result;
 ...
 }
 else
 {
 // Handle error.
 }
 });

User Interaction Patterns

Frequently, an application needs to notify the user of the occurrence of an event or ask for confirmation before proceeding with an operation. These interactions are often brief interactions designed to simply inform them of a change in the application or to obtain a simple response from them. Some of these interactions may appear modal to the user, such as when displaying a dialog box or a message box, or they may appear non-modal to the user, such as when displaying a toast notification or a pop-up window.

There are multiple ways to interact with the user in these cases, but implementing them in an MVVM-based application in a way that preserves a clean separation of concerns can be challenging. For example, in a non-MVVM application, you would often use the MessageBox class in the UI’s code-behind file to simply prompt the user for a response. In an MVVM application, this would not be appropriate because it would break the separation of concerns between the view and the view model.

In terms of the MVVM pattern, the view model is responsible for initiating an interaction with the user and for consuming and processing any response, while the view is responsible for actually managing the interaction with the user using whatever user experience is appropriate. Preserving the separation of concerns between the presentation logic implemented in the view model, and the user experience implemented by the view, helps to improve testability and flexibility.

There are two common approaches to implementing these kinds of user interactions in the MVVM pattern. One approach is to implement a service that can be used by the view model to initiate interaction with the user, thereby preserving its independence on the view’s implementation. Another approach uses events raised by the view model to express the intent to interact with the user, along with components in the view that are bound to these events and that manage the visual aspects of the interaction. Each of these approaches is described in the following sections.

Using an Interaction Service

In this approach, the view model relies on an interaction service component to initiate interaction with the user via a message box. This approach supports a clean separation of concerns and testability by encapsulating the visual implementation of the interaction in a separate service component. Typically, the view model has a dependency on an interaction service interface. It frequently acquires a reference to the interaction service’s implementation via dependency injection or a service locator.

After the view model has a reference to the interaction service, it can programmatically request interaction with the user whenever necessary. The interaction service implements the visual aspects of the interaction, as shown in the following illustration. Using an interface reference in the view model allows for different implementations to be used, according to the implementation requirements of the user interface. For example, implementations of the interaction service for WPF could be provided, allowing for greater re-use of the application’s presentation logic.

[image: Using an interaction service to interact with the user]

Modal interactions, such as where the user is presented with a MessageBox or modal pop-up window to obtain a specific response before execution can proceed, can be implemented in a synchronous way, using a blocking method call, as shown in the following code example.

var result = interactionService.ShowMessageBox(
 "Are you sure you want to cancel this operation?",
 "Confirm",
 MessageBoxButton.OK);
if (result == MessageBoxResult.Yes)
{
 CancelRequest();
}

However, one of the disadvantages of this approach is that it forces a synchronous programming model. An alternative asynchronous implementation allows for the view model to provide a callback to execute on completion of the interaction. The following code illustrates this approach.

interactionService.ShowMessageBox(
 "Are you sure you want to cancel this operation?",
 "Confirm",
 MessageBoxButton.OK,
 result =>
 {
 if (result == MessageBoxResult.Yes)
 {
 CancelRequest();
 }
 });

The asynchronous approach provides greater flexibility when implementing the interaction service by allowing modal and non-modal interactions to be implemented. For example, in WPF, the MessageBox class can be used to implement a truly modal interaction with the user.

Using Interaction Request Objects

Another approach to implementing simple user interactions in the MVVM pattern is to allow the view model to make interaction requests directly to the view itself via an interaction request object coupled with a behavior in the view. The interaction request object encapsulates the details of the interaction request, and its response, and communicates with the view via events. The view subscribes to these events to initiate the user experience portion of the interaction. The view will typically encapsulate the user experience of the interaction in a behavior that is data-bound to the interaction request object provided by the view model, as shown in the following illustration.

[image: Using an interaction request object to interact with the user]

This approach provides a simple, yet flexible, mechanism that preserves a clean separation between the view model and the view—it allows the view model to encapsulate the application’s presentation logic, including any required user interactions, while allowing the view to fully encapsulate the visual aspects of the interaction. The view model’s implementation, including its expected interactions with the user through view, can be easily tested, and the UI designer has a lot of flexibility in choosing how to implement the interaction within the view via the use of different behaviors that encapsulate the different user experiences for the interaction.

This approach is consistent with the MVVM pattern, enabling the view to reflect state changes it observes on the view model and using two-way data binding for communication of data between the two. The encapsulation of the non-visual elements of the interaction in an interaction request object, and the use of a corresponding behavior to manage the visual elements of the interaction, are very similar to the way command objects and command behaviors are used.

This approach is the approach adopted by Prism. The Prism Library directly supports this pattern through the IInteractionRequest interface and the InteractionRequest<

T>

 class. The IInteractionRequest interface defines an event to initiate the interaction. Behaviors in the view bind to this interface and subscribe to the event that it exposes. The InteractionRequest<

T>

 class implements the IInteractionRequest interface and defines two Raise methods to allow the view model to initiate an interaction and to specify the context for the request, and optionally, a callback delegate.

Initiating Interaction Requests from the View Model

The InteractionRequest<

T>

 class coordinates the view model’s interaction with the view during an interaction request. The Raise method allows the view model to initiate the interaction and to specify a context object (of type T) and a callback method that is called after the interaction completes. The context object allows the view model to pass data and state to the view for it to be used during the interaction with the user. If a callback method was specified, the context object will be passed back to the view model; this allows any changes the user made during the interaction to be passed back to the view model.

public interface IInteractionRequest
{
 event EventHandler<InteractionRequestedEventArgs> Raised;
}

public class InteractionRequest<T> : IInteractionRequest
 where T : INotification
{
 public event EventHandler<InteractionRequestedEventArgs> Raised;

 public void Raise(T context)
 {
 this.Raise(context, c => { });
 }

 public void Raise(T context, Action<T> callback)
 {
 var handler = this.Raised;
 if (handler != null)
 {
 handler(
 this,
 new InteractionRequestedEventArgs(
 context,
 () => { if (callback != null) callback(context); }));
 }
 }
}

Prism provides pre-defined context classes that support common interaction request scenarios. The INotification interface is used for all context objects. It is used when the interaction request is used to notify the user of an important event in the application. It provides two properties—Title and Content—which will be displayed to the user. Typically, notifications are one-way, so it is not expected that the user will change these values during the interaction. The Notification class is the default implementation of this interface.

The IConfirmation interface extends the INotification interface and adds a third property—Confirmed—which is used to signify that the user has confirmed or denied the operation. The Confirmation class, the provided IConfirmation implementation, is used to implement MessageBox style interactions where the user wants to obtain a yes/no response from the user. You can define a custom context class that implements the INotification interface to encapsulate whatever data and state you need to support the interaction.

To use the InteractionRequest<

T>

 class, the view model class will create an instance of the InteractionRequest<

T>

 class and define a read-only property to allow the view to data-bind against it. When the view model wants to initiate the request, it will call the Raise method, passing in the context object and, optionally, the callback delegate.

public InteractionRequestViewModel()
{
 this.ConfirmationRequest = new InteractionRequest<IConfirmation>();
 ...
 // Commands for each of the buttons. Each of these raise a different interaction request.
 this.RaiseConfirmationCommand = new DelegateCommand(this.RaiseConfirmation);
 ...
}

public InteractionRequest<IConfirmation> ConfirmationRequest { get; private set; }

private void RaiseConfirmation()
{
 this.ConfirmationRequest.Raise(
 new Confirmation { Content = "Confirmation Message", Title = "Confirmation" },
 c => { InteractionResultMessage = c.Confirmed ? "The user accepted." : "The user cancelled."; });
}

The Interactivity QuickStart [https://msdn.microsoft.com/en-us/library/ff921081%28v=pandp.40%29.aspx] illustrates how the IInteractionRequest interface and the InteractionRequest<

T>

 class are used to implement user interactions between the view and view model (see InteractionRequestViewModel.cs).

Using Behaviors to Implement the Interaction User Experience

Because the interaction request object represents a logical interaction, the exact user experience for the interaction is defined in the view. Behaviors are often used to encapsulate the user experience for an interaction; this allows the UI designer to choose an appropriate behavior and to bind it to the interaction request object on the view model.

The view must be set up to detect an interaction request event, and then to present the appropriate visual display for the request. Triggers are used to initiate actions whenever a specific event is raised.

The standard EventTrigger provided by Blend can be used to monitor an interaction request event by binding to the interaction request objects exposed by the view model. However, the Prism Library defines a custom EventTrigger, named InteractionRequestTrigger, which automatically connects to the appropriate Raised event of the IInteractionRequest interface. This reduces the amount of Extensible Application Markup Language (XAML) needed and reduces the chance of inadvertently entering an incorrect event name.

After the event is raised, the InteractionRequestTrigger will invoke the specified action. For WPF, the Prism Library provides the PopupWindowAction class, which displays a pop-up window to the user. When the window is displayed, its data context is set to the context parameter of the interaction request. Using the WindowContent property of the PopupWindowAction class, you can specify the view that will be shown in the popup window. The title of the pop-up window is bound to the Title property of the context object.

Note: By default, the specific type of pop-up window displayed by the PopupWindowAction class depends on the type of the context object. For a Notification context object, a DefaultNotificationWindow is displayed, while for a Confirmation context object, a DefaultConfirmationWindow is displayed. The DefaultNotificationWindow displays a simple popup window to display the notification, while the DefaultConfirmationWindow also contains Accept and Cancel buttons to capture the user’s response. You can override this behavior by specifying a custom pop-up window using the WindowContent property of the PopupWindowAction class.

The following example shows how the InteractionRequestTrigger and the PopupWindowAction are used to display a confirmation pop-up window to the user within the Interactivity QuickStart.

<i:Interaction.Triggers>
 <prism:InteractionRequestTrigger SourceObject="{Binding ConfirmationRequest, Mode=OneWay}">
 <prism:PopupWindowAction IsModal="True" CenterOverAssociatedObject="True"/>
 </prism:InteractionRequestTrigger>
</i:Interaction.Triggers>

Note: The PopupWindowAction has three important properties, IsModal, which sets the popup to modal when set to true; CenterOverAssociatedObject, which displays the popup centered to the parent window when set to true. Finally, the WindowContent property, which is not specified, therefore the DefaultConfirmationWindow will be shown.

The PopupWindowAction sets the Notification object as the data context of the DefaultNotificationWindow, which displays the Content property of the Notification object. After the user closes the pop-up window, the context object is passed back to the view model, along with any updated values, via the callback method. In the confirmation example in the Interactivity QuickStart, the DefaultConfirmationWindow is responsible for setting the Confirmed property on the supplied Confirmation object to true when the OK button is clicked.

Different triggers and actions can be defined to support other interaction mechanisms. The implementation of the Prism InteractionRequestTrigger and PopupWindowAction classes can be used as a basis for the development of your own triggers and actions.

Advanced Construction and Wire-Up

To successfully implement the MVVM pattern, you will need to fully understand the responsibilities of the view, model, and view model classes so that you can implement your application’s code in the correct classes. Implementing the correct patterns to allow these classes to interact (through data binding, commands, interaction requests, and so on) is also an important requirement. The final step is to consider how the view, view model, and model classes are instantiated and associated with each other at run time.

Choosing an appropriate strategy to manage this step is especially important if you are using a dependency injection container in your application. The Managed Extensibility Framework (MEF) and the Unity Application Block (Unity) both provide the ability to specify dependencies between the view, view model, and model classes and to have them fulfilled by the container at run time.

Typically, you define the view model as a dependency of the view, so that when the view is constructed (using the container) it automatically instantiates the required view model. In turn, any components or services that the view model depends on will also be instantiated by the container. After the view model is successfully instantiated, the view then sets it as its data context.

Creating the View and View Model Using MEF

Using MEF, you can specify the view’s dependency on a view model using the import attribute, and you can specify the concrete view model type to be instantiated via an export attribute. You can either import the view model into the view via a property or as a constructor argument.

For example, the Shell view in the StockTrader Reference Implementation declares a write-only property for the view model, together with an import attribute. When the view is instantiated, MEF creates an instance of the appropriate exported view model and sets the property value. The property setter assigns the view model as the view’s data context, as shown here.

[Import]
ShellViewModel ViewModel
{
 set { this.DataContext = value; }
}

The view model is defined and exported, as shown here.

[Export]
public class ShellViewModel : BindableBase
{
 ...
}

An alternative approach is to define an importing constructor on the view, as shown here.

public Shell()
{
 InitializeComponent();
}

[ImportingConstructor]
public Shell(ShellViewModel viewModel) : this()
{
 this.DataContext = viewModel;
}

The view model will then be instantiated by MEF and passed as an argument to the view’s constructor.

Note: You can use property injection or constructor injection in both MEF and Unity; however, you may find property injection to be simpler because you do not have to maintain two constructors. Design-time tools, such as Visual Studio and Expression Blend, require that controls have a default parameter-less constructor in order to display them in the designer. Any additional constructors that you define should ensure that the default constructor is called so that view can be properly initialized via the InitializeComponent method.

Creating the View and View Model Using Unity

Using Unity as your dependency injection container is similar to using MEF, and both property-based and constructor-based injection are supported. The principal difference is that the types are typically not implicitly discovered at run time; instead, they have to be registered with the container.

Typically, you define an interface on the view model so the view model’s specific concrete type can be decoupled from the view. For example, the view can define its dependency on the view model via a constructor argument, as shown here.

public Shell()
{
 InitializeComponent();
}

public Shell(ShellViewModel viewModel) : this()
{
 this.DataContext = viewModel;
}

Note: The default parameter-less constructor is necessary to allow the view to work in design-time tools, such as Visual Studio and Blend for Visual Studio 2013.

Alternatively, you can define a write-only view model property on the view, as shown here. Unity will instantiate the required view model and call the property setter after the view is instantiated.

public Shell()
{
 InitializeComponent();
}

[Dependency]
public ShellViewModel ViewModel
{
 set { this.DataContext = value; }
}

The view model type is registered with the Unity container, as shown here.

IUnityContainer container;
container.RegisterType<ShellViewModel>();

The view can then be instantiated through the container, as shown here.

IUnityContainer container;
var view = container.Resolve<Shell>();

Creating the View and View Model Using an External Class

Often, you will find it useful to define a controller or service class to coordinate the instantiation of the view and view model classes. This approach can be used with a dependency injection container, such as MEF or Unity, or when the view explicitly creates its required view model.

This approach is particularly useful when implementing navigation in your application. In this case, the controller is associated with a placeholder control or region in the UI, and it coordinates the construction and placement of views into that placeholder or region.

For example, a service class can be used to build views using a container and show them in the main page. In this example, views are specified by view names. Navigation is initiated via a call to the ShowView method on the UI service, as shown in this simple example.

private void NavigateToQuestionnaireList()
{
 // Ask the UI service to go to the "questionnaire list" view.
 this.uiService.ShowView(ViewNames.QuestionnaireTemplatesList);
}

The UI service is associated with a placeholder control in the UI of the application; it encapsulates the creation of the required view and coordinates its appearance in the UI. The ShowView of the UIService creates an instance of the view via the container (so that its view model and other dependencies can be fulfilled) and then displays it in the proper location, as shown here.

public void ShowView(string viewName)
{
 var view = this.ViewFactory.GetView(viewName);
 this.MainWindow.CurrentView = view;
}

Note: Prism provides extensive support for navigation within regions. Region navigation uses a mechanism very similar to the preceding approach, except that the region manager is responsible for coordinating the instantiation and placement of the view in the specific region. For more information, see the section View-Based Navigation, in Navigation.

Testing MVVM Applications

Testing models and view models from MVVM applications is the same as testing any other classes, and the same tools and techniques—such as unit testing and mocking frameworks—can be used. However, there are some testing patterns that are typical to model and view model classes and can benefit from standard testing techniques and test helper classes.

Testing INotifyPropertyChanged Implementations

Implementing the INotifyPropertyChanged interface allows views to react to changes originated in models and view models. These changes are not limited to domain data shown in controls; they are also used to control the view, such as view model states that cause animations to be started or controls to be disabled.

Simple Cases

Properties that can be updated directly by the test code can be tested by attaching an event handler to the PropertyChanged event and checking whether the event is raised after setting a new value for the property. Helper classes, such as the PropertyChangeTracker class, can be used to attach a handler and collect the results; this avoids repetitive tasks when writing tests. The following code example shows a test using this type of helper class.

var changeTracker = new PropertyChangeTracker(viewModel);

viewModel.CurrentState = "newState";

CollectionAssert.Contains(changeTracker.ChangedProperties, "CurrentState");

Properties that are the result of a code-generation process that guarantees the implementation of the INotifyPropertyChanged interface, such as those in code generated by a model designer, typically do not need to be tested.

Computed and Non-Settable Properties

When properties cannot be set by test code—such as properties with non-public setters or read-only, calculated properties—the test code needs to stimulate the object under test cause the change in the property and its corresponding notification. However, the structure of the test is the same as that of the simpler cases, as shown in the following code example, where a change in a model objects causes a property in a view model to change.

var changeTracker = new PropertyChangeTracker(viewModel);

var question = viewModel.Questions.First() as OpenQuestionViewModel;
question.Question.Response = "some text";

CollectionAssert.Contains(changeTracker.ChangedProperties, "UnansweredQuestions");

Whole Object Notifications

When you implement the INotifyPropertyChanged interface, it is allowed for an object to raise the PropertyChanged event with a null or empty string as the changed property name to indicate that all properties in the object may have changed. These cases can be tested just like the cases that notify individual property names.

Testing INotifyDataErrorInfo Implementations

There are several mechanisms available to enable bindings to perform input validation, such as throwing exceptions when properties are set, implementing the IDataErrorInfo interface, and implementing the INotifyDataErrorInfo interface. Implementing the INotifyDataErrorInfo interface allows for greater sophistication because it supports indicating multiple errors per property and performing asynchronous and cross-property validation; as such, it also requires the most testing.

There are two aspects to testing INotifyDataErrorInfo implementations: testing that the validation rules are correctly implemented and testing that the requirements for implementations of the interface, such as raising the ErrorsChanged event when the result for the GetErrors method would be different, are met.

Testing Validation Rules

Validation logic is usually simple to test, because it is typically a self-contained process where the output depends on the input. For each property with validation rules associated, there should be tests on the results of invoking the GetErrors method with the validated property name for valid values, invalid values, boundary values, and so on. If the validation logic is shared, like when expressing validation rules declaratively using the data annotation’s validation attribute, the more exhaustive tests can be concentrated on the shared validation logic. On the other hand, custom validation rules must be thoroughly tested.

// Invalid case
var notifyErrorInfo = (INotifyDataErrorInfo)question;

question.Response = -15;

Assert.IsTrue(notifyErrorInfo.GetErrors("Response").Cast<ValidationResult>().Any());

// Valid case
var notifyErrorInfo = (INotifyDataErrorInfo)question;

question.Response = 15;
Assert.IsFalse(notifyErrorInfo.GetErrors("Response").Cast<ValidationResult>().Any());

Cross-property validation rules follow the same pattern, typically requiring more tests to accommodate the combination of values for the different properties.

Testing the Requirements for INotifyDataErrorInfo Implementations

Besides producing the right values for the GetErrors method, implementations of the INotifyDataErrorInfo interface must ensure the ErrorsChanged event is raised appropriately, such as when the result for GetErrors would be different. Additionally, the HasErrors property must reflect the overall error state of the object implementing the interface.

There is no mandatory approach for implementing the INotifyDataErrorInfo interface. However, implementations that rely on objects that accumulate validation errors and perform the necessary notifications are typically preferred because they are simpler to test. This is because it is not necessary to verify that the requirements for all the members of the INotifyDataErrorInfo interface are met for each validation rule on each validated property (as long, of course, as the error management object is properly tested).

Testing the interface requirements should involve at least the following verifications:

	The HasErrors property reflects the overall error state of the object. Setting a valid value for a previously invalid property does not result in a change for this property if other properties still have invalid values.

	The ErrorsChanged event is raised when the error state for a property changes, as reflected by a change in the result for the GetErrors method. The error state change could be going from a valid state (that is, no errors) to an invalid state and vice versa, or it can go from an invalid state to a different invalid state. The updated result for GetErrors is available for handlers of the ErrorsChanged event.

When testing implementations for the INotifyPropertyChanged interface, helper classes, such as the NotifyDataErrorInfoTestHelper class in the MVVM sample projects, usually make writing tests for implementations of the INotifyDataErrorInfo interface easier by handling repetitive housekeeping operations and standard checks. They are particularly useful when the interface is implemented without relying on some kind of reusable errors manager. The following code example shows this type of helper class.

var helper =
 new NotifyDataErrorInfoTestHelper<NumericQuestion, int?>(
 question,
 q => q.Response);

helper.ValidatePropertyChange(
 6,
 NotifyDataErrorInfoBehavior.Nothing);

helper.ValidatePropertyChange(
 20,
 NotifyDataErrorInfoBehavior.FiresErrorsChanged
 | NotifyDataErrorInfoBehavior.HasErrors
 | NotifyDataErrorInfoBehavior.HasErrorsForProperty);

helper.ValidatePropertyChange(
 null,
 NotifyDataErrorInfoBehavior.FiresErrorsChanged
 | NotifyDataErrorInfoBehavior.HasErrors
 | NotifyDataErrorInfoBehavior.HasErrorsForProperty);

helper.ValidatePropertyChange(
 2,
 NotifyDataErrorInfoBehavior.FiresErrorsChanged);

Testing Asynchronous Service Calls

When implementing the MVVM pattern, view models usually invoke operations on services, often asynchronously. Tests for code that invokes these operations typically use mocks or stubs as replacements for the actual services

The standard patterns used to implement asynchronous operations provide different guarantees regarding the thread in which notifications about the status of an operation occur. Although the Event-based Asynchronous design pattern [http://msdn.microsoft.com/en-us/library/wewwczdw.aspx] guarantees that handlers for the events are invoked on a thread that is appropriate for the application, the IAsyncResult design pattern [http://msdn.microsoft.com/en-us/library/ms228963.aspx] does not provide any such guarantees forcing the view model code that originates the call to ensure any changes that would affect the view are posted to the UI thread.

Dealing with threading concerns requires more complicated, and, therefore, usually harder to test, code. It also usually requires the tests themselves to be asynchronous. When notifications are guaranteed to occur in the UI thread, either because the standard event-based asynchronous pattern is used or because view models rely on a service access layer to marshal notifications to the appropriate thread, tests can be simplified and can essentially play the role of a “dispatcher for the UI thread.”

The way services are mocked depends on the asynchronous event pattern used to implement their operations. If a method-based based pattern is used, mocks for the service interface created using a standard mocking framework are usually enough, but if the event-based pattern is used, mocks based on a custom class that implements the methods to add and remove handlers for the service events are usually preferred.

The following code example shows a test for the appropriate behavior on the successful completion of an asynchronous operation notified in the UI thread using mocks for services. In this example, the test code captures the callback supplied by the view model when it makes the asynchronous service call. The test then simulates the completion of that call later in the test by invoking the callback. This approach allows testing of a component that uses an asynchronous service without the complexity of making your tests asynchronous.

questionnaireRepositoryMock
 .Setup(
 r =>
 r.SubmitQuestionnaireAsync(
 It.IsAny<Questionnaire>(),
 It.IsAny<Action<IOperationResult>>()))
 .Callback<Questionnaire, Action<IOperationResult>>(
 (q, a) => callback = a);

uiServiceMock
 .Setup(svc => svc.ShowView(ViewNames.QuestionnaireTemplatesList))
 .Callback<string>(viewName => requestedViewName = viewName);

submitResultMock
 .Setup(sr => sr.Error)
 .Returns<Exception>(null);

CompleteQuestionnaire(viewModel);
viewModel.Submit();

// Simulate callback posted to the UI thread.
callback(submitResultMock.Object);

// Check expected behavior – request to navigate to the list view.
Assert.AreEqual(ViewNames.QuestionnaireTemplatesList, requestedViewName);

Note: Using this testing approach only exercises the functional capabilities of the objects under test; it does not test that the code is thread safe.

More Information

For more information about the logical tree, see Trees in WPF [http://msdn.microsoft.com/en-us/library/ms753391.aspx] on MSDN.

For more information about attached properties, see Attached Properties Overview [https://msdn.microsoft.com/en-us/library/cc265152%28VS.95%29.aspx] on MSDN.

For more information about MEF, see Managed Extensibility Framework Overview [http://msdn.microsoft.com/en-us/library/dd460648.aspx] on MSDN.

For more information about Unity, see Unity Application Block [http://www.msdn.com/unity] on MSDN.

For more information about DelegateCommand, see Implementing the MVVM Pattern.

For more information about using Microsoft Expression Blend behaviors, see Working with built-in behaviors [https://msdn.microsoft.com/en-us/library/ff724013%28v=Expression.40%29.aspx] on MSDN.

For more information about creating custom behaviors with Microsoft Expression Blend, see Creating Custom Behaviors [https://msdn.microsoft.com/en-us/library/ff724708%28v=Expression.40%29.aspx] on MSDN.

For more information about creating custom triggers and actions with Microsoft Expression Blend, see Creating Custom Triggers and Actions [https://msdn.microsoft.com/en-us/library/ff724707%28v=Expression.40%29.aspx] on MSDN.

For more information about using the dispatcher in WPF, see Threading Model [http://msdn.microsoft.com/en-us/library/ms741870.aspx] and The Dispatcher Class [https://msdn.microsoft.com/en-us/library/ms615907%28v=VS.95%29.aspx] on MSDN.

For more information about region navigation, see the section, View-Based Navigation in Navigation.

For more information about the Event-based Asynchronous pattern, see Event-based Asynchronous Pattern Overview [http://msdn.microsoft.com/en-us/library/wewwczdw.aspx] on MSDN.

For more information about the IAsyncResult design pattern, see Asynchronous Programming Overview [https://msdn.microsoft.com/en-us/library/ms228963.aspx] on MSDN.

 Composing the User Interface Using the Prism Library for WPF

Composing the User Interface Using the Prism Library for WPF

A composite application user interface (UI) is composed from loosely coupled visual components known as views that are typically contained in the application modules, but they do not need to be. If you divide your application into modules, you need some way to loosely compose the UI, but you might choose to use this approach even if the views are not in modules. To the user, the application presents a seamless user experience and delivers a fully integrated application.

To compose your UI, you need an architecture that allows you to create a layout composed of loosely coupled visual elements generated at run time. Additionally, the architecture should provide strategies for these visual elements to communicate in a loosely coupled fashion.

An application UI can be built by using one of the following paradigms:

	All required controls for a form are contained in a single Extensible Application Markup Language (XAML) file, composing the form at design time.

	Logical areas of the form are separated into distinct parts, typically user controls. The parts are referenced by the form, and the form is composed at design time.

	Logical areas of the form are separated into distinct parts, typically user controls. The parts are unknown to the form and are dynamically added to the form at run time. Applications that use this methodology are known as composite applications using UI composition patterns.

The Stock Trader Reference Implementation (Stock Trader RI) is composed by loading multiple views that come from different modules into regions exposed by the shell, as shown in the following illustration.

[image: Stock Trader RI regions and views]

UI Layout Concepts

The root object in a composite application is known as the shell. The shell acts as a master page for the application. The shell contains one or more regions. Regions are place holders for content that will be loaded at run time. Regions are attached to UI elements such as a ContentControl, ItemsControl, TabControl or a custom control and manage the UI element’s content. Region content can be loaded automatically or on-demand, depending on the application requirements.

Typically, a region’s content is a view. A view encapsulates a portion of your UI that you would like to keep as decoupled as possible from other parts of the application. You can define a view as a user control, data template, or even a custom control.

A region manages the display and layout of views. Regions can be accessed in a decoupled way by their name and support dynamically adding or removing views. A region is attached to a hosting control. Think of regions as containers into which views are dynamically loaded.

The following sections introduce the high-level core concepts for composite application development.

Shell

The shell is the application root object that contains the primary UI content. In a Windows Presentation Foundation (WPF) application, the shell is the Window object.

The shell plays the role of a master page providing the layout structure for the application. The shell contains one or more named regions where modules can specify the views that will appear. It can also define certain top-level UI elements, such as the background, main menu, and toolbar.

The shell defines the overall appearance of the application. It might define styles and borders that are present and visible in the shell layout itself, and it might also define styles, templates, and themes that will be applied to the views that are plugged into the shell.

Typically, the shell is a part of the WPF application project. The assembly that contains the shell might or might not reference the assemblies that contain the views to be loaded in the shell’s regions.

Views

Views are the main unit of UI construction within a composite application. You can define a view as a user control, page, data template, or custom control. A view encapsulates a portion of your UI that you would like to keep as decoupled as possible from other parts of the application. You can choose what goes in a view based on encapsulation or a piece of functionality, or you can choose to define something as a view because you will have multiple instances of that view in your application.

Because of the content model of WPF, there is nothing specific to the Prism Library required to define a view. The easiest way to define a view is to define a user control. To add a view to the UI, you simply need a way to construct it and add it to a container. WPF provides mechanisms to do this. The Prism Library adds the ability to define a region into which a view can be dynamically added at run time.

Composite Views

A view that supports specific functionality can become complicated. In that case, you might want to divide the view into several child views and have the parent view handle constructing itself by using the child views as parts. The application might do this statically at design time, or it might support having modules add child views through a contained region at run time. When you have a view that is not fully defined in a single view class, you can refer to that as a composite view. In many situations, a composite view is responsible for constructing the child views and for coordinating the interactions between them. You can design child views that are more loosely coupled from their sibling views and their parent composite view by using the Prism Library commands and the event aggregator.

Views and Design Patterns

Although the Prism Library does not require that you use them, you should consider using one of several UI design patterns when implementing a view. The Stock Trader RI and QuickStarts demonstrate the Model-View-ViewModel (MVVM) pattern as a way to implement a clean separation between the view layout and the view logic.

The MVVM UI design pattern is recommended because it is a natural fit for the Microsoft XAML platforms. The dependency property system and rich data binding stack of these platforms enable the view and view model to communicate in a loosely coupled manner.

Separating the logic from the view is important for testability and maintainability, and it improves the developer-designer workflow.

If you create a view with a user control or custom control and put all the logic in the code-behind file, your view can be difficult to test because you have to create an instance of the view to unit test the logic. This is a problem particularly if the view derives from, or depends on, running WPF components as part of its execution context. To make sure that you can unit test the view logic in isolation without these dependencies, you need to be able to create a mockup of the view to remove the dependencies on the execution context, which requires separate classes for the view and the logic.

If you define a view as a data template, there is no code associated with the view itself. Therefore, you have to put the associated logic somewhere else. The same clean separation of logic from layout that is required for testability also helps make the view easier to maintain.

Note: Unit testing and UI automation testing are two different types of testing with different coverage.

Unit testing best practices recommend that the object be tested in isolation. To achieve object isolation, you need a mockup or stub for each external dependency. Then granular unit tests are run against the object.

UI automation testing runs the application, applies gestures to the UI, and then tests for the expected results. This type of test verifies that UI elements are correctly connected to the application logic.

Separating the logic from the view provides a clean separation of concerns. In addition to testability considerations, this separation enables designers to work on the UI independently of the developer. For more information about MVVM, see Implementing the MVVM Pattern.

Commands, UI Triggers, Actions, and Behaviors

When a view is implemented with its logic in the code-behind file, you add event handlers to service UI interactions. However, when you use MVVM, the view model cannot directly handle events raised by the UI. To route UI gesture events to the view model, you can use commands or UI triggers, actions, and behaviors.

Commands

Commands separate the semantics and the object that invokes a command from the logic that executes the command. Built into commands is the ability to indicate whether an action is available. Commands in the UI are data bound to ICommand properties on the view model. For more information about commands, see Commands in Implementing the MVVM Pattern.

UI Triggers, Actions, and Behaviors

Triggers, actions, and behaviors are part of the Microsoft.Expression.Interactivity namespace and are shipped with Blend for Visual Studio 2013. They are also part of the Blend SDK. Triggers, actions, and behaviors provide a comprehensive API for handling UI events or commands, and then routing them to the ICommand properties methods exposed by the DataContext. For more information about UI triggers, actions, and behaviors, see sections Implementing the MVVM Pattern and Interaction Triggers and Events to Commands in Advanced MVVM Scenarios.

User Interactions

User interactions are interactions that the application presents to the user. These interaction are typically popup windows presented to the user. In MVVM scenarios these user interactions can be generated either from the view or from the view model. Prism provides InteractionRequests and InteractionRequestTriggers for cases when the view model needs to request a user interaction, and the InvokeCommandAction action for when the view needs to invoke a command when a specified event is fired.

For more information about user Interactions, examples, and how to use them, see the Interactivity QuickStart [https://msdn.microsoft.com/en-us/library/ff921081%28v=pandp.40%29.aspx] .

Data Binding

Data binding is one of the most important framework features of the XAML platforms. To successfully develop applications on the XAML platforms, you need a solid understanding of data binding.

Data binding takes full advantage of the intrinsic change notification provided by the dependency property system. When combined with the Common Language Runtime (CLR) class implementation of the INotifyPropertyChanged interface, change notification enables codeless interaction between the target and source objects participating in the data binding.

Data binding enables dissimilar target and source types to data bind by using a value converter to convert one type to the other type. Data binding has multiple validation hooks within its pipeline that you can use to validate user input.

You are strongly encouraged to read the Dependency Properties Overview [http://msdn.microsoft.com/en-us/library/ms752914.aspx] and Data Binding Overview [http://msdn.microsoft.com/en-us/library/ms752347.aspx] topics on MSDN. A full understand of these two topics is critical to successfully developing applications on the Microsoft XAML platforms. For more information about data binding, see Data Binding in Implementing the MVVM Pattern.

Regions

Regions are enabled in the Prism Library through a region manager, regions, and region adapters. The next sections describe how they work together.

Region Manager

The RegionManager class is responsible for creating and maintaining a collection of regions for the host controls. The RegionManager uses a control-specific adapter that associates a new region with the host control. The following illustration shows the relationship between the region, control, and adapter set up by the RegionManager.

[image: Region, control, and adapter relationship]

The RegionManager can create regions in code or in XAML. The RegionManager.RegionName attached property is used to create a region in XAML by applying the attached property to the host control.

Applications can contain one or more instances of a RegionManager. You can specify the RegionManager instance into which you want to register the region. This is useful if you want to move the control around in the visual tree and do not want the region to be cleared when the attached property value is removed.

The RegionManager provides a RegionContext attached property that permits its regions to share data.

Region Implementation

A region is a class that implements the IRegion interface. The term region represents a container that can hold dynamic data that is presented in a UI. A region allows the Prism Library to place dynamic content contained in modules in predefined placeholders in a UI container.

Regions can hold any type of UI content. A module can contain UI content presented as a user control, a data type that is associated with a data template, a custom control, or any combination of these. This lets you define the appearance for the UI areas and then have modules place content in these predetermined areas.

A region can contain zero or more items. Depending on the type of host control the region is managing, one or more of the items could be visible. For example, a ContentControl can display only a single object. However, the region in which it is located can contain many items, and an ItemsControl can display multiple items. This allows each item in the region to be visible in the UI.

In the following illustration, the Stock Trader RI shell contains four regions: MainRegion, MainToolbarRegion, ResearchRegion, and ActionRegion. These regions are populated by the various modules in the application—the content can be changed at any time.

[image: Stock Trader RI regions]

Module User Control to Region Mapping

To demonstrate how modules and content are associated with regions, see the following illustration. It shows the association of WatchModule and the NewsModule with the corresponding regions in the shell.

The MainRegion contains the WatchListView user control, which is contained in the WatchModule. The ResearchRegion also contains the ArticleView user control, which is contained in the NewsModule.

In applications created with the Prism Library, mappings like this will be a part of the design process because designers and developers use them to determine what content is proposed to be in a specific region. This allows designers to determine the overall space needed and any additional items that must be added to ensure that the content will be viewable in the allowable space.

[image: Module user control to region mapping]

Default Region Functionality

While you do not need to fully understand region implementations to use them, it might be useful to understand how controls and regions are associated and the default region functionality: for example, how a region locates and instantiates views, how views can be notified when they are the active view, or how view lifetime can be tied to activation.

The following sections describe the region adapter and region behaviors.

Region Adapter

To expose a UI control as a region, it must have a region adapter. Region adapters are responsible for creating a region and associating it with the control. This allows you to use the IRegion interface to manage the UI control contents in a consistent way. Each region adapter adapts a specific type of UI control. The Prism Library provides the following three region adapters:

	ContentControlRegionAdapter. This adapter adapts controls of type System.Windows.Controls.ContentControl and derived classes.

	SelectorRegionAdapter. This adapter adapts controls derived from the class System.Windows.Controls.Primitives.Selector, such as the System.Windows.Controls.TabControl control.

	ItemsControlRegionAdapter. This adapter adapts controls of type System.Windows.Controls.ItemsControl and derived classes.

Region Behaviors

The Prism Library introduces the concept of region behaviors. These are pluggable components that give a region most of its functionality. Region behaviors were introduced to support view discovery and region context (described later in this topic), and to create an API that is consistent across both WPF and Silverlight. Additionally, behaviors provide an effective way to extend a region’s implementation.

A region behavior is a class that is attached to a region to give the region additional functionality. This behavior is attached to the region and remains active for the lifetime of the region. For example, when an AutoPopulateRegionBehavior is attached to a region, it automatically instantiates and adds any ViewTypes that are registered against regions with that name. For the lifetime of the region, it keeps monitoring the RegionViewRegistry for new registrations. It is easy to add custom region behaviors or replace existing behaviors, either on a system-wide or a per-region basis.

The next sections describe the default behaviors that are automatically added to all regions. One behavior, the SelectorItemsSourceSyncBehavior, is only attached to controls that derive from the Selector.

Registration Behavior

The RegionManagerRegistrationBehavior is responsible for making sure that the region is registered to the correct RegionManager. When a view or control is added to the visual tree as a child of another control or region, any region defined in the control should be registered in the RegionManager of the parent control. When the child control is removed, the registered region is unregistered.

Auto-Population Behavior

There are two classes responsible for implementing view discovery. One of them is the AutoPopulateRegionBehavior. When it is attached to a region, it retrieves all view types that are registered under the name of the region. It then creates instances of those views and adds them to the region. After the region is created, the AutoPopulateRegionBehavior monitors the RegionViewRegistry for any newly registered view types for that region name.

If you want to have more control over the view discovery process, consider creating your own implementation of the IRegionViewRegistry and the AutoPopulateRegionBehavior.

Region Context Behaviors

The region context functionality is contained within two behaviors: the SyncRegionContextWithHostBehavior and the BindRegionContextToDependencyObjectBehavior. These behaviors are responsible for monitoring changes to the context that were made on the region, and then synchronizing the context with a context dependency property attached to the view.

Activation Behavior

The RegionActiveAwareBehavior is responsible for notifying a view if it is active or inactive. The view must implement IActiveAware to receive these change notifications. This active aware notification is one-directional (it travels from the behavior to the view). The view cannot affect its active state by changing the active property on the IActiveAware interface.

Region Lifetime Behavior

The RegionMemberLifetimeBehavior is responsible for determining if an item should be removed from the region when it is deactivated. The RegionMemberLifetimeBehavior monitors the region’s ActiveViews collection to discover items that transition into a deactivated state. The behavior checks the removed items for IRegionMemberLifetime or the RegionMemberLifetimeAttribute (in that order) to determine if it should be kept alive on removal.

If the item in the collection is a System.Windows.FrameworkElement, it will also check its DataContext for IRegionMemberLifetime or the RegionMemberLifetimeAttribute.

The region items are checked in the following order:

	IRegionMemberLifetime.KeepAlive value

	DataContext’s IRegionMemberLifetime.KeepAlive value

	RegionMemberLifetimeAttribute.KeepAlive value

	DataContext’s RegionMemberLifetimeAttribute.KeepAlive value

Control-Specific Behaviors

The SelectorItemsSourceSyncBehavior is used only for controls that derive from Selector, such as a tab control in WPF. It is responsible for synchronizing the views in the region with the items of the selector, and then synchronizing the active views in the region with the selected items of the selector.

Extending the Region Implementation

The Prism Library provides extension points that allow you to customize or extend the default behavior of the provided APIs. For example, you can write your own region adapters, region behaviors, or change the way the Navigation API parses URIs. For more information about extending the Prism Library, see Extending the Prism Library.

View Composition

View composition is the constructing of a view. In composite applications, views from multiple modules have to be displayed at run time in specific locations within the application UI. To achieve this, you need to define the locations where the views will appear and how the views will be created and displayed in those locations.

Views can be created and displayed in the locations either automatically through view discovery, or programmatically through view injection. These two techniques determine how individual views are mapped to named locations within the application UI.

View Discovery

In view discovery, you set up a relationship in the RegionViewRegistry between a region’s name and the type of a view. When a region is created, the region looks for all the ViewTypes associated with the region and automatically instantiates and loads the corresponding views. Therefore, with view discovery, you do not have explicit control over when the views that correspond to a region are loaded and displayed.

View Injection

In view injection, your code obtains a reference to a region, and then programmatically adds a view into it. Typically, this is done when a module initializes or as a result of a user action. Your code will query a RegionManager for a specific region by name and then inject views into it. With view injection, you have more control over when views are loaded and displayed. You also have the ability to remove views from the region. However, with view injection, you cannot add a view to a region that has not yet been created.

Navigation

The Prism Library 4.0 contains Navigation APIs. The Navigation APIs simplify the view injection process by allowing you to navigate a region to an URI. The Navigation API instantiates the view, adds it to the region, and then activates it. Additionally, the Navigation API allows navigating back to a previously created view contained in a region. For more information about the Navigation APIs, see Navigation.

When to Use View Discovery vs. View Injection

Choosing which view loading strategy to use for a region depends on the application requirements and the function of the region.

Use view discovery in the following situations:

	Automatic view loading is desired or required.

	Single instances of a view will be loaded into the region.

Use view injection in the following situations:

	Your application uses the Navigation APIs.

	You need explicit or programmatic control over when a view is created and displayed, or you need to remove a view from a region; for example, as a result of application logic or navigation.

	You need to display multiple instances of the same views in a region, where each view instance is bound to different data.

	You need to control which instance of a region a view is added to. For example, you want to add a customer detail view to a specific customer detail region. (This scenario requires implementing scoped regions as described later in this topic.)

UI Layout Scenarios

In composite applications, views from multiple modules are displayed at run time in specific locations within the application UI. To achieve this, you need to define the locations where the views will appear and how the views will be created and displayed in those locations.

The decoupling of the view and the location in the UI in which it will be displayed allows the appearance and layout of the application to evolve independently of the views that appear within the region.

The next sections describe the core scenarios you will encounter when you develop a composite application. When appropriate, examples from the Stock Trader RI will be used to demonstrate a solution for the scenario.

Implementing the Shell

The shell is the application root object in which the primary UI content is contained. In a Windows Presentation Foundation (WPF) application, the shell is the Window object.

A shell can contain named regions where modules can specify the views that will appear. It can also define certain top-level UI elements, such as the main menu and toolbar. The shell defines the overall structure and appearance for the application, and is similar to an ASP.NET master page control. It could define styles and borders that are present and visible in the shell layout itself, and it could also define styles, templates, and themes that are applied to the views that are plugged into the shell.

You do not need to have a distinct shell as part of your application architecture to use the Prism Library. If you are building a completely new composite application, implementing a shell provides a well-defined root and initialization pattern for setting up the main UI of your application. However, if you are adding Prism Library features to an existing application, you do not have to change the basic architecture of your application to add a shell. Instead, you can alter your existing window definitions or controls to add regions that can pull in views as needed.

You can also have more than one shell in your application. If your application is designed to open more than one top-level window for the user, each top-level window acts as shell for the content it contains.

Stock Trader RI Shell

The WPF Stock Trader RI has a shell as its main window. In the following illustration, the shell and views are highlighted. The shell is the main window that appears when the Stock Trader RI starts and which contains all the views. It defines the regions into which modules add their views and a couple of top-level UI items, including the CFI Stock Trader title and the Watch List tear-off banner.

[image: Stock Trader RI shell window, regions, and views]

The shell implementation in the Stock Trader RI is provided by Shell.xaml, its code-behind file Shell.xaml.cs, and its view model ShellViewModel.cs. Shell.xaml includes the layout and UI elements that are part of the shell, including definitions of regions to which modules add their views.

The following XAML shows the structure and main XAML elements that define the shell. Notice that the RegionName attached property is used to define the four regions and that the window background image provides a background for the shell.

<!--Shell.xaml (WPF) -->
<Window x:Class="StockTraderRI.Shell">

 <!--shell background -->
 <Window.Background>
 <ImageBrush ImageSource="Resources/background.png" Stretch="UniformToFill"/>
 </Window.Background>

 <Grid>

 <!-- logo -->
 <Canvas x:Name="Logo" ...>
 <TextBlock Text="CFI" ... />
 <TextBlock Text="STOCKTRADER" .../>
 </Canvas>

 <!-- main bar -->
 <ItemsControl
 x:Name="MainToolbar"
 prism:RegionManager.RegionName="{x:Static inf:RegionNames.MainToolBarRegion}"/>

 <!-- content -->
 <Grid>
 <Controls:AnimatedTabControl
 x:Name="PositionBuySellTab"
 prism:RegionManager.RegionName="{x:Static inf:RegionNames.MainRegion}"/>
 </Grid>

 <!-- details -->
 <Grid>
 <ContentControl
 x:Name="ActionContent"
 prism:RegionManager.RegionName="{x:Static inf:RegionNames.ActionRegion}"/>
 </Grid>

 <!-- sidebar -->
 <Grid x:Name="SideGrid">
 <Controls:ResearchControl
 prism:RegionManager.RegionName="{x:Static inf:RegionNames.ResearchRegion}" />
 </Grid>

 </Grid>
</Window>

The implementation of the Shell code-behind file is very simple. The Shell is exported so that when the bootstrapper creates it, its dependencies will be resolved by the Managed Extensibility Framework (MEF). The shell has its single dependency—the ShellViewModel—injected during construction, as shown in the following example.

// Shell.xaml.cs
[Export]
public partial class Shell : Window
{
 public Shell()
 {
 InitializeComponent();
 }

 [Import]
 ShellViewModel ViewModel
 {
 set
 {
 this.DataContext = value;
 }
 }
}

// ShellViewModel.cs
[Export]
public class ShellViewModel : BindableBase
{
 // This is where any view model logic for the shell would go.
}

The minimal code in the code-behind file illustrates the power and simplicity of the composite application architecture and loose coupling between the shell and its constituent views.

Defining Regions

You define where views will appear by defining a layout with named locations, known as regions. Regions act as placeholders for one or more views that will be displayed at run time. Modules can locate and add content to regions in the layout without knowing how and where the region is displayed. This allows the layout to change without affecting the modules that add the content to the layout.

Regions are defined by assigning a region name to a WPF control, either in XAML as shown in the previous Shell.xaml file or in code. Regions can be accessed by their region name. At run time, views are added to the named Region control, which then displays the view or views according to the layout strategy that the views implement. For example, a tab control region will lay out its child views in a tabbed arrangement. Regions support the addition or removal of views. Views can be created and displayed in regions either programmatically or automatically. In the Prism Library, the former is achieved through view injection and the latter through view discovery. These two techniques determine how individual views are mapped to the named regions within the application UI.

The shell of the application defines the application layout at the highest level; for example, by specifying the locations for the main content and the navigation content, as shown in the following illustration. Layout within these high-level views is similarly defined, allowing the overall UI to be recursively composed.

[image: A template shell]

Regions are sometimes used to define locations for multiple views that are logically related. In this scenario, the region control is typically an ItemsControl-derived control that will display the views according to the layout strategy that it implements, such as in a stacked or tabbed layout arrangement.

Regions can also be used to define a location for a single view; for example, by using a ContentControl. In this scenario, the region control displays only one view at a time, even if more than one view is mapped to that region location.

Stock Trader RI Shell Regions

[image: Stock Trader RI shell regions]

A multiple-view layout is also demonstrated in the Stock Trader RI when the application is buying or selling a stock. The Buy/Sell area is a list-style region that shows multiple buy/sell views (OrderCompositeView) as part of its list, as shown in the following illustration.

[image: ItemsControl region]

The shell’s ActionRegion contains the OrdersView. The OrdersView contains the Submit All and Cancel All buttons as well as the OrdersRegion. The OrdersRegion is attached to a ListBox control which displays multiple OrderCompositeViews.

IRegion

A region is a class that implements the IRegion interface. The region is the container that holds content to be displayed by a control. The following code shows the IRegion interface.

public interface IRegion : INavigateAsync, INotifyPropertyChanged
{
 IViewsCollection Views { get; }
 IViewsCollection ActiveViews { get; }
 object Context { get; set; }
 string Name { get; set; }
 Comparison<object> SortComparison { get; set; }
 IRegionManager Add(object view);
 IRegionManager Add(object view, string viewName);
 IRegionManager Add(object view, string viewName, bool createRegionManagerScope);
 void Remove(object view);
 void Deactivate(object view);
 object GetView(string viewName);
 IRegionManager RegionManager { get; set; }
 IRegionBehaviorCollection Behaviors { get; }
 IRegionNavigationService NavigationService { get; set; }
}

Adding a Region in XAML

The RegionManager supplies an attached property that you can use for simple region creation in XAML. To use the attached property, you must load the Prism Library namespace into the XAML and then use the RegionName attached property. The following example shows how to use the attached property in a window with an AnimatedTabControl.

Notice the use of the x:Static markup extension to reference the MainRegion string constant. This practice eliminates magic strings in the XAML.

<!-- (WPF) -->
<Controls:AnimatedTabControl
 x:Name="PositionBuySellTab"
 prism:RegionManager.RegionName="{x:Static inf:RegionNames.MainRegion}"/>

Adding a Region by Using Code

The RegionManager can register regions directly without using XAML. The following code example shows how to add a region to a control from the code-behind file. First a reference to the region manager is obtained. Then, using the RegionManager static methods SetRegionManager and SetRegionName, the region is attached to the UI’s ActionContent control and then that region is named ActionRegion.

IRegionManager regionManager = ServiceLocator.Current.GetInstance<IRegionManager>();
RegionManager.SetRegionManager(this.ActionContent, regionManager);
RegionManager.SetRegionName(this.ActionContent, "ActionRegion");

Displaying Views in a Region When the Region Loads

With the view discovery approach, modules can register views (view models or presentation models) for a specific named location. When that location is displayed at run time, any views that have been registered for that location will be created and displayed within it automatically.

Modules register views with a registry. The parent view queries this registry to discover the views that were registered for a named location. After they are discovered, the parent view places those views on the screen by adding them to the placeholder control.

After the application is loaded, the composite view is notified to handle the placement of new views that have been added to the registry.

The following illustration shows the view discovery approach.

[image: View discovery]

The Prism Library defines a standard registry, RegionViewRegistry, to register views for these named locations.

To show a view in a region, register the view with the region manager, as shown in the following code example. You can directly register a view type with the region, in which case the view will be constructed by the dependency injection container and added to the region when the control hosting the region is loaded.

// View discovery
this.regionManager.RegisterViewWithRegion("MainRegion", typeof(EmployeeView));

Optionally, you can provide a delegate that returns the view to be shown, as shown in the next example. The region manager will display the view when the region is created.

// View discovery
this.regionManager.RegisterViewWithRegion("MainRegion", () => this.container.Resolve<EmployeeView>());

The UI Composition QuickStart has a walkthrough in the EmployeeModule ModuleInit.cs file that demonstrates how to use the RegisterViewWithRegion method.

Displaying Views in a Region Programmatically

In the view injection approach, views are programmatically added or removed from a named location by the modules that manage them. To enable this, the application contains a registry of named locations in the UI. A module can use the registry to look up one of the locations and then programmatically inject views into it. To make sure that locations in the registry can be accessed similarly, each of the named locations adheres to a common interface used to inject the view. The following illustration shows the view injection approach.

[image: View injection]

The Prism Library defines a standard registry, RegionManager, and a standard interface, IRegion, for access these locations.

To use view injection to add a view to a region, get the region from the region manager, and then call the Add method, as shown in the following code. With view injection, the view is displayed only after the view is added to a region, which can happen when the module is loaded or when a user action completes a predefined action.

// View injection
IRegion region = regionManager.Regions["MainRegion"];

var ordersView = container.Resolve<OrdersView>();
region.Add(ordersView, "OrdersView");
region.Activate(ordersView);

In addition to the Stock Trader RI, the UI Composition QuickStart has a walkthrough for implementing view injection.

Region Navigation

The Prism Library 5.0 includes Navigation APIs that provide a rich and consistent API for implementing navigation in a WPF application.

Region navigation is a form of view injection. When a navigation request is processed, it will attempt to locate a view in the region that can fulfill the request. If it cannot find a matching view, it calls the application container to create the object, and then injects the object into the target region and activates it.

The following code example from the Stock Trader RI ArticleViewModel illustrates how to initiate a navigation request.

this.regionManager.RequestNavigate(RegionNames.SecondaryRegion, new Uri("/NewsReaderView", UriKind.Relative));

For more information about region navigation, see Navigation. The View-Switching Navigation QuickStart and State-Based Navigation QuickStart are also examples of implementing application navigation.

Ordering Views in a Region

Whether it uses view discovery or view Injection, an application might need to order how views appear in a TabControl, ItemsControl, or any other control that displays multiple active views. By default, views appear in the order that they were registered and added into the region.

When a composite application is built, views are often registered from different modules. Declaring dependencies between modules can help alleviate the problem, but when modules and views do not have any real interdependencies, declaring an artificial dependency couples modules unnecessarily.

To allow views to participate in ordering themselves, the Prism Library provides the ViewSortHint attribute. This attribute contains a string Hint property that allows a view to declare a hint of how it should be ordered in the region.

When displaying views, the Region class uses a default view sorting routine that uses the hint to order the views. This is a simple case-sensitive ordinal sort. Views that have the sort hint attribute are ordered ahead of those without. Also, those without the attribute appear in the order they were added to the region.

If you want to change how views are ordered, the Region class provides a SortComparison property that you can set with your own Comparison<

object>

 delegate method. It is important to note that the ordering of the region’s Views and ActiveViews properties are reflected in the UI because adapters such as the ItemsControlRegionAdapter bind directly to these properties. A custom region adapter could implement its own sorting and filter that will override how the region orders views.

The View Switching QuickStart demonstrates a simple numbering scheme to order the views in the left-hand-side navigation region. The following code examples show ViewSortHint applied to each of the navigation item views.

[Export]
[ViewSortHint("01")]
public partial class EmailNavigationItemView { ... }

[Export]
[ViewSortHint("02")]
public partial class CalendarNavigationItemView { ... }

[Export]
[ViewSortHint("03")]
public partial class ContactsDetailNavigationItemView { ... }

[Export]
[ViewSortHint("04")]
public partial class ContactsAvatarNavigationItemView { ... }

Sharing Data Between Multiple Regions

The Prism Library provides multiple approaches to communicating between views, depending on your scenario. The region manager provides the RegionContext property as one of these approaches.

RegionContext is useful when you want to share context between a parent view and child views that are hosted in a region. RegionContext is an attached property. You set the value of the context on the region control so that it can be made available to all child views that are displayed in that region control. The region context can be any simple or complex object and can be a data-bound value. The RegionContext can be used with either view discovery or view injection.

Note: The DataContext property in WPF is used to set the local data context for the view. It allows the view to use data binding to communicate with a view model, local presenter, or model. RegionContext is used to share context between multiple views and is not local to a single view. It provides a simple mechanism for sharing context between multiple views.

The following code shows how the RegionContext attached property is used in XAML.

<TabControl AutomationProperties.AutomationId="DetailsTabControl"
 prism:RegionManager.RegionName="{x:Static local:RegionNames.TabRegion}"
 prism:RegionManager.RegionContext="{Binding Path=SelectedEmployee.EmployeeId}"
...>

You can also set the RegionContext in code, as shown in the following example.

RegionManager.Regions["Region1"].Context = employeeId;

To retrieve the RegionContext in a view, the GetObservableContext static method of the RegionContext class is used. It passes the view as a parameter and then accesses its Value property, as shown in the following code example.

private void GetRegionContext()
{
 this.Model.EmployeeId = (int)RegionContext.GetObservableContext(this).Value;
}

The value of the RegionContext can be changed from within a view by simply assigning a new value to its Value property. Views can opt to be notified of changes to the RegionContext by subscribing to the PropertyChanged event on the ObservableObject that is returned by the GetObservableContext method. This allows multiple views to be kept in synchronization when their RegionContext is changed. The following code example demonstrates subscribing to the PropertyChanged event.

ObservableObject<object> viewRegionContext =
 RegionContext.GetObservableContext(this);
viewRegionContext.PropertyChanged += this.ViewRegionContext_OnPropertyChangedEvent;

private void ViewRegionContext_OnPropertyChangedEvent(object sender,
 PropertyChangedEventArgs args)

{
 if (args.PropertyName == "Value")
 {
 var context = (ObservableObject<object>) sender;
 int newValue = (int)context.Value;
 }
}

Note: The RegionContext is set as an attached property on the content object hosted in the region. This means that the content object has to derive from DependencyObject. In the preceding example, the view is a visual control, which ultimately derives from DependencyObject.

If you choose to use WPF data templates to define your view, the content object will represent the ViewModel or PresentationModel. If your view model or presentation model needs to retrieve the RegionContext, it will need to derive from the DependencyObject base class.

Creating Multiple Instances of a Region

Scoped regions are available only with view injection. You should use them if you need a view to have its own instance of a region. Views that define regions with attached properties automatically inherit their parent’s RegionManager. Usually, this is the global RegionManager that is registered in the shell window. If the application creates more than one instance of that view, each instance would attempt to register its region with the parent RegionManager. RegionManager allows only uniquely named regions; therefore, the second registration would produce an error.

Instead, use scoped regions so that each view will have its own RegionManager and its regions will be registered with that RegionManager rather than the parent RegionManager, as shown in the following illustration.

[image: Parent and scoped RegionManagers]

To create a local RegionManager for a view, specify that a new RegionManager should be created when you add your view to a region, as illustrated in the following code example.

IRegion detailsRegion = this.regionManager.Regions["DetailsRegion"];
View view = new View();
bool createRegionManagerScope = true;
IRegionManager detailsRegionManager = detailsRegion.Add(view, null, createRegionManagerScope);

The Add method will return the new RegionManager that the view can retain for further access to the local scope.

Creating Views

The visual representation of your application can take many forms, including user controls, custom controls, and data templates, to name a few. In the case of the Stock Trader RI, user controls are typically used to represent distinct sections on the main window, but this is not a standard. In your application, you should use an approach that you are most familiar with and that fits into how you work as a designer. Regardless of the predominating visual representation in your application, you will inevitably use a combination of user controls, custom controls, and data templates in your overall design. The following figure shows where the Stock Trader RI uses these various items. This illustration also serves as a reference for the following sections, which describe each of the items.

[image: Stock Trader RI usage of user controls, custom controls, and data templates]

User Controls

Both Blend for Visual Studio 2013 and Visual Studio 2013 provide rich support for creating user controls. User controls created with these tools are therefore recommended for creating UI content with the Prism Library. As mentioned earlier in this topic, the Stock Trader RI uses them extensively to create content that will be inserted into regions. The WatchListView.xaml user control is a good example of a simple UI representation that is contained inside the WatchModule. This control is a very simple control that is straightforward to create using this model.

Custom Controls

In some situations, a user control is too limiting. In these cases, custom layout or extensibility is more important than ease of creation. This is where custom controls are useful. In the Stock Trader RI, the pie chart control is a good example of this. This control is composed from data derived from the positions and shows a chart of the overall portfolio. This type of control is a little more challenging than a user control to create, and it has limited visual design support in Blend for Visual Studio 2013 and Visual Studio 2013, compared to a user control.

Data Templates

Data templates are an important part of most types of data-driven applications. The use of data templates for list-based controls is prevalent throughout the Stock Trader RI. In many cases, you can use a data template to create complete visual representations without needing to create any type of control. The ResearchRegion uses a data template to show articles and, in conjunction with an Items style, provides an indication of which item was selected.

Blend for Visual Studio 2013 and Visual Studio 2013 have full visual design support for data templates.

Resources

Resources such as styles, resource dictionaries, and control templates can be scattered throughout an application. This is especially true with a composite application. When you consider where to place resources, pay special attention to dependencies between UI elements and the resources they need. The Stock Trader RI solution, shown in the following figure, contains labels that indicate the various areas where resources can live.

[image: Resource distribution across a solution]

Application Resources

Typically, application resources are resources that are available to an application as a whole. These resources tend to be focused on the root application, but they can also provide default styling on a type basis for modules or controls. An example of this is a text box style that is applied to the text box type in the root application. This style will be available to all text boxes in the application unless the style is overridden at the module or control level.

Module Resources

Module resources play the same role as root application resources in that they can apply to all items in a module. Using resources at this level can provide a consistent appearance across the entire module and can also allow for reuse in more specific instances that span one or more visual components. The use of resources at the module level should be contained within the individual module. Creating dependencies between modules can lead to issues that are difficult to locate when UI elements appear incorrectly.

Control Resources

Control resources are usually contained in control libraries and can be used by all the controls in the control library. These resources tend to have the most limited scope because control libraries typically contain very specific controls and do not contain user controls. (In an application created with the Prism Library, user controls are typically placed in the modules in which they are used.)

UI Design Guidance

The goal of this topic is to provide some high-level guidance to the XAML designer and developer who are building an application with the Prism Library and WPF. This topic describes UI layout, visual representation, data binding, resources, and the presentation model. After reading this topic, you should have a high-level understanding of how to approach designing the UI of an application based on the Prism Library and some of the techniques that can help you create a maintainable UI in composite applications.

Guidelines for Designing User Interfaces

The layout of composite applications created with the Prism Library builds on the standard principals of WPF —the layout uses the concepts of panels that contain related items. However, with composite applications, the content inside the various panels is dynamic and is not known during design time. This forces designers and developers to create page structures that can contain layout content and then design each of the elements that fit into the layout separately. As a designer or developer, this means that you have to think about two main layout concepts in the Prism Library: container composition and regions.

Container Composition

Container composition is really just an extension of the containment model that WPF inherently provides. The term container can mean any element, including a window, page, user control, panel, custom control, control template, or data template, that can contain other elements.

How you visualize your UI can vary from implementation to implementation, but you will find recurring themes that stand out. You will create a window, page, or user control that contains both fixed content and dynamic content. The fixed content will consist of the overall structure of the containing UI element, and the dynamic content will be what is placed inside a region.

For example, the WPF Stock Trader RI has a startup window named Shell.xaml that contains the overall structure for the application. The next illustration shows the shell loaded in Blend for Visual Studio 2013. Notice that only the fixed portion of the UI is visible. The remaining sections of the shell are dynamically inserted into the various regions by the modules as the application loads.

The design-time experience is a little limited in this type of application, but the fact that you know content will be placed in the various regions at run time is something that you need to design for. To see an example of this, compare the designer view of the main page in the next illustration to the run-time view in the illustration that follows it. In the designer view, the page is mostly empty. Contrast that with the run-time view, where there is a position area that contains a tab control with position data, and a trend line, pie chart, and news area pertaining to the selected stocks. The differences between the designer view and run-time view demonstrate the challenges designers and developers face when they create applications built with the Prism Library.

The items cannot be seen during design time; therefore, determining how big they are and how they fit into the overall appearance of the application is a little difficult. Consider the following as you create the layout for your containers:

	Are there any size constraints that will limit how large content can be? If there are, consider using containers that support scrolling.

	Consider using an expander and ScrollViewer combination for situations in which a large amount of dynamic content needs to fit into a confined area.

	Pay close attention to how content enlarges as the screen content grows to ensure that the appearance of your application is appealing in any resolution.

[image: Stock Trader RI main window in Blend for Visual Studio 2013]

Stock Trader RI main window in Blend for Visual Studio 2013

[image: Stock Trader RI main window during run time]

Stock Trader RI main window during run time

Viewing Composite Application at Design Time

The two previous figures illustrate one of the challenges of working with high-level views that are composed at run time. Each UI element in a composite application must be designed separately. This makes it hard to visualize how the composite page or window will look at run time. To visualize the composite view in its composed state, you can create a test project with a page or window that contains all the UI elements for the view you want to test.

Additionally, consider using the design-time sample data features in Blend for Visual Studio 2013 and Visual Studio 2013 to populate UI elements with data. Design-time data is very helpful when you work with data templates, list controls, charts, or graphs. For more information, see the section Guidelines for Design-Time Sample Data.

Layout

Consider the following when you design the layout of a composite application:

	The shell defines the main layout of the application. Each area of the layout is a region and should be kept as an empty container. Do not place content inside regions at design time because content will be loaded there at run time.

	The shell should contain the background, titles, and the footer. Think of the shell as an ASP.NET master page.

	Control containers that act as regions are decoupled from the views that they contain. Therefore, you should be able to change the size of the views without modifying the controls, and you should be able to change the size of the controls without modifying the views. You should consider the following when defining the size of a view:
	If a view will be used in several regions or if it is uncertain where it will be used, design it with dynamic width and height.

	If the views have fixed sizes, the regions of the shell should use dynamic sizes.

	If the shell regions have fixed sizes, the views should use dynamic sizes.

	Views might require a fixed height and dynamic width. An example of this is the PositionPieChart view located in the sidebar of the Stock Trader RI.

	Other views might require a dynamic height and width. For example, the NewsReader views in the sidebar of the Stock Trader RI. The height itself depends on the title’s length, and the width should always adapt to the region’s size (sidebar width). The same applies to the PositionSummaryView view, where the grid’s width should adapt to the screen size and the height should adapt to the number of rows in the grid.

	Views should generally have transparent backgrounds, allowing the shell background to provide the application visual background.

	Always use named resources for assigning colors, brushes, fonts and font sizes, rather than directly assigning the property value in XAML. This makes application maintenance much easier over time. It also allows an application to respond to changes in resource dictionaries at run time.

Animation

Consider the following when you use animation in the shell or views:

	You can animate the layout of the shell, but you will have to animate its contents and views separately.

	Design and animate each view separately.

	Use soft or gentle animations to provide a visual clue that a UI element is being brought into view or being removed from view. This gives an application a polished look and feel.

Blend for Visual Studio 2013 offers a rich set of behaviors, easing functions, and an outstanding editing experience for animating and transitioning UI elements based on visual state changes or events. For more information, see VisualStateManager Class [https://msdn.microsoft.com/en-us/library/cc626338%28v=VS.95%29.aspx] on MSDN.

Run-Time Optimization

Consider the following tips for performance optimization:

	Place any common resources in the App.xaml file or a merged dictionary to avoid duplicating the styles.

Design-Time Optimizations

The following sections describe design-time scenarios and provide solutions for making the most of the design-time experience.

Large Solutions with Many XAML Resources

In large applications with many XAML resources that are part of the solution, visual designer load time can be affected, sometimes significantly. This performance slowdown exists because the visual designer must parse all merged XAML resources. The solution to this problem is to move all XAML resources to another solution, compile that solution, and then reference the new XAML resource DLL from the large solution. Because the XAML resources are in a binary referenced assembly, the visual designer does not parse the XAML resources, thus improving design-time performance. When moving XAML resources to an external assembly, you might want to consider exposing ComponentResourceKeys for your resources. For more information, see ComponentResourceKey Markup Extension [http://msdn.microsoft.com/en-us/library/ms753186.aspx] on MSDN.

XAML Assets

XAML is a powerful and expressive language for creating assets such as images, diagrams, drawings, and 3-D scenes. Some developers and designers prefer creating XAML assets instead of using .ico, .jpg, or .png image files. One reason that they prefer the XAML approach is to take advantage of the resolution independence of XAML rendering. Another is that they can use one tool set, Blend for Visual Studio 2013, to create all the required assets and design their applications.

If the solution has many of these assets, design-time visual designer loading can be affected. Moving assets to a separate DLL solves the performance problem. Moving the assets also enables reuse across multiple solutions.

Visual Designers and Referenced Assemblies

An unfortunate side-effect of moving XAML resources and assets to a binary referenced assembly is that the Blend for 2013 and Visual Studio 2013 property editors do not list resources located in binary referenced assemblies. This means that you will not be able to pick a named resource from one of the resource pickers provided by the tools. Instead, you will need to type the name of the resource.

Guidelines for Creating Designer Friendly Views

The following are some of the characteristics of a designer friendly (also known as a blendable or tool-able) application:

	It provides a productive editing experience by using the Visual Studio and Blend designers.

	It is tooling-enabled. For example, it allows you to use the binding builder.

	It provides design-time sample data when required.

	It allows code to be executed at design time without causing unhandled exceptions.

The following actions are performed many times during an editing session. User code that is not designer friendly will cause one or more of these actions to fail, thus reducing the productivity and creativity of a developer or designer.

	Design surface actions:
	Constructing objects

	Loading objects

	Setting property values

	Performing design surface gestures

	Using a control as the root element

	Hosting a control inside another control

	Opening, closing, and reopening a XAML file repeatedly

	Rebuilding the project

	Reloading the designer

	Binding builder actions:
	Discovering the DataContext

	Listing the available data sources

	Listing data source type properties

	Design-time sample data actions:
	Using controls on the design surface to correctly display sample data

Coding for Design Time

To give you a rich design-time experience, the Visual Studio and Blend designers instantiate objects and run code at design time. However, null reference exceptions caused by code that attempts to access a reference type before it has been instantiated cause a high percentage of loading failures and unnecessary design time exceptions.

The following table lists the main causes of poor design-time experiences. By avoiding the following issues and using the techniques to mitigate these problems, your design-time experience and productivity will be greatly enhanced, and the developer-to-designer workflow will be much smoother.

Avoid This in User Code	Visual Studio 2013	Blend for Visual Studio 2013
——–	————————	———————————-
Spinning multiple threads at design time. For example, instantiating and starting a Timer in a constructor or Loaded event at design time.	[image: No]	[image: No]
Using controls that cause stack overflows at design time.Using controls that attempt to recursively load themselves.	[image: No]	[image: No]
Throwing null reference exceptions in converters or data template selectors.	[image: No]	[image: No]
Throwing null reference or other exceptions in constructors. These are caused by: Using code that calls into the business or data layers to return data from a database or over the network at design time.		
	Attempting to resolve dependencies by using MEF, inversion of control (IoC), or a Service Locator before bootstrapping or container initialization code has run.

[image: No]	[image: No]	
Throwing null reference or other exceptions inside the Loaded events of controls or user controls. This happens when you make assumptions about the state of the control that might be true at run time but are not true at design time.	[image: No]	[image: No]
Attempting to access the Application or Application.Current object at design time.	[image: No]	[image: No]
Creating very large projects.	[image: Yes]	[image: No]

 Navigation Using the Prism Library for WPF

Navigation Using the Prism Library for WPF

As the user interacts with a rich client application, its user interface (UI) will be continuously updated to reflect the current task and data that the user is working on. The UI may undergo considerable changes over time as the user interacts with and completes various tasks within the application. The process by which the application coordinates these UI changes is often referred to as navigation. This topic describes how to implement navigation for composite Model-View-ViewModel (MVVM) applications using the Prism library.

Frequently, navigation means that certain controls in the UI are removed, while other controls are added. In other cases, navigation may mean that the visual state of one or more existing controls is updated—for example, some controls may be simply hidden or collapsed, while other controls are shown or expanded. Similarly, navigation may mean that the data being displayed by a control is updated to reflect the current state of the application—for example, in a master-detail scenario, the data displayed in the detail view will be updated based on the currently selected item in the master view. All of these scenarios can be considered navigation because the user interface is updated to reflect the user’s current task and the application’s current state.

Navigation within an application can result from the user’s interaction with the UI (via mouse events or other UI gestures) or from the application itself as a result of internal logic-driven state changes. In some cases, navigation may involve very simple UI updates that require no custom application logic. In other cases, the application may implement complex logic to programmatically control navigation to ensure that certain business rules are enforced—for example, the application may not allow the user to navigate away from a certain form without first ensuring that the data entered is correct.

Implementing the required navigation behavior in a Windows Presentation Foundation (WPF) application can often be relatively straightforward because it provides direct support for navigation. However, navigation can be more complex to implement in applications that use the Model-View-ViewModel (MVVM) pattern or in composite applications that use multiple loosely-coupled modules. Prism provides guidance on implementing navigation in these situations.

Navigation in Prism

Navigation is defined as the process by which the application coordinates changes to its UI as a result of the user’s interaction with the application or internal application state changes.

UI updates can be accomplished by adding or removing elements from the application’s visual tree, or by applying state changes to existing elements within the visual tree. WPF is a very flexible platform, and it is often possible to implement a particular navigation scenario using this approach. However, the approach that will be most appropriate for your application depends on multiple factors.

Prism differentiates between the two styles of navigation described earlier. Navigation accomplished via state changes to existing controls in the visual tree is referred to as state-based navigation. Navigation accomplished via the addition or removal of elements from the visual tree is referred to as view-based navigation. Prism provides guidance on implementing both styles of navigation, focusing on the case where the application is using the Model-View-ViewModel (MVVM) pattern to separate the UI (encapsulated in the view) from the presentation logic and data (encapsulated in the view model).

State-Based Navigation

In state-based navigation, the view that represents the UI is updated either through state changes in the view model or through the user’s interaction within the view itself. In this style of navigation, instead of replacing the view with another view, the view’s state is changed. Depending on how the view’s state is changed, the updated UI may feel to the user like navigation.

This style of navigation is suitable in the following situations:

	The view needs to display the same data or functionality in different styles or formats.

	The view needs to change its layout or style based on the underlying state of the view model.

	The view needs to initiate limited modal or non-modal interaction with the user within the context of the view.

This style of navigation is not suitable for situations in which the UI has to present different data to the user or when the user has to perform a different task. In these situations, it is better to implement separate views (and view models) to represent the data or task, and then to navigate between them using view-based navigation, as described later on in this topic. Similarly, this style of navigation is not suitable if the number of UI state changes required to implement the navigation are overly complex because the view’s definition can become large and difficult to maintain. In this case, it is better to implement the navigation across separate views by using view-based navigation.

The following sections describe the typical situations in which state-based navigation can be used. Each of these sections refers to the State-Based Navigation QuickStart, which implements an instant messaging–style application that allows users to manage and chat with their contacts.

Displaying Data in Different Formats or Styles

Your application may often need to present the same data to the user, but in different formats or styles. In this case, you can use a state-based navigation within the view to switch between the different styles, potentially using an animated transition between them. For example, the State-Based Navigation QuickStart allows users to choose how their contacts are displayed—either as a simple text list or as avatars (icons). Users can switch between these visual representations by clicking the List button or the Avatars button. The view provides an animated transition between the two representations, as shown in the following illustration.

[image: Animated transition between views]

Contact view navigation in the State-Based Navigation QuickStart

Because the view is presenting the same data, but in a different visual representation, the view model is not required to be involved in the navigation between representations. In this case, navigation is entirely handled within the view itself. This approach provides the UI designer with a lot of flexibility to design a compelling user experience without requiring changes to the application’s code.

Blend behaviors provide a good way to implement this style of navigation within a view. The State-Based Navigation QuickStart application uses Blend’s DataStateBehavior data-bound to a radio button to switch between two visual states that are defined using the visual state manager, one button to show the contacts as a list and one button to show the contacts as icons.

<ei:DataStateBehavior Binding="{Binding IsChecked, ElementName=ShowAsListButton}"
 Value="True"
 TrueState="ShowAsList"
 FalseState="ShowAsIcons"/>

[image: State based navigation sample screenshot]

As the user clicks the Contacts or Avatar radio buttons, the visual state is toggled between the ShowAsList visual state and the ShowAsIcons visual state. The flip transition animation between these states is also defined using the visual state manager.

Another example of this style of navigation is shown by the State-Based Navigation QuickStart application when the user switches to the details views for the currently selected contact. The following illustration shows an example of this.

The Contact Details view in the State-Based Navigation QuickStart

Again, this can be easily implemented using the Blend DataStateBehavior; however, this time it is bound to the ShowDetails property on the view model, which toggles between the ShowDetails and ShowContacts visual states using a flip transition animation.

Reflecting Application State

Similarly, the view within an application may sometimes need to change its layout or style based on changes to an internal application state, which in turn is represented by a property on a view model. An example of this scenario is shown in the State-Based Navigation QuickStart where the user’s connection status is represented on the Chat view model class using a ConnectionStatus property. As the user’s connection status changes, the view is informed (via a property change notification event) allowing the view to visually represent the current connection state appropriately, as shown in the following illustration.

[image: Connection state representation]

Connection state representation in the State-Based Navigation QuickStart

To implement this, the view defines a DataStateBehavior data bound to the view model’s ConnectionStatus property to toggle between the appropriate visual states.

<ei:DataStateBehavior Binding="{Binding ConnectionStatus}"
 Value="Available"
 TrueState="Available" FalseState="Unavailable"/>

Note that the connection state can be changed by the user via the UI or by the application according to some internal logic or event. For example, the application may move to an “unavailable” state if the user does not interact with the view within a certain time period or when the user’s calendar indicates that he or she is in a meeting. The State-Based Navigation QuickStart simulates this scenario by switching the connection status randomly using a timer. When the connection status is changed, the property on the view model is updated, and the view is informed via a property changed event. The UI is then updated to reflect the current connection status.

All the preceding examples involve defining visual states in the view and switching between them as a result of the user’s interaction with the view or via changes in properties defined by the view model. This approach allows the UI designer to implement navigation-like visual behavior in the view without requiring the view to be replaced or requiring any code changes to the application’s code. This approach is suitable when the view is required to render the same data in different styles or layouts. It is not suitable for situations in which the user is to be presented with different data or application functionality or when navigating to a different part of the application.

Interacting With the User

Frequently, an application will need to interact with the user in a limited way. In these situations, it is often more appropriate to interact with the user within the context of the current view, instead of navigating to a new view. For example, in the State-Based Navigation QuickStart, the user is able to send a message to a contact by clicking the Send Message button. The view then displays a pop-up window that allows the user to type the message, as shown in the following illustration. Because this interaction with the user is limited and logically takes place within the context of the parent view, it can be easily implemented as state-based navigation.

[image: Interacting with the user using a pop-up window]

Interacting with the user using a pop-up window in the State-Based Navigation QuickStart

Interacting with the user using a pop-up window in the State-Based Navigation QuickStart
To implement this behavior, the State-Based Navigation QuickStart implements a SendMessage command, which is bound to the Send Message button. When this command is invoked, the view model interacts with the view to display the pop-up window. This is achieved using the Interaction Request pattern described in Implementing the MVVM Pattern.

The following code example shows how the view in the State-Based Navigation QuickStart application responds to the SendMessageRequest interaction request object provided by the view model. When the request event is received, the SendMessageChildWindow is displayed as a popup window.

<prism:InteractionRequestTrigger SourceObject="{Binding SendMessageRequest}">
 <prism:PopupWindowAction IsModal="True">
 <prism:PopupWindowAction.WindowContent>
 <vs:SendMessagePopupView />
 </prism:PopupWindowAction.WindowContent>
 </prism:PopupWindowAction>
</prism:InteractionRequestTrigger>

View-Based Navigation

Although state-based navigation can be useful for the scenarios outlined earlier, navigation within an application will most often be accomplished by replacing one view within the application’s UI with another. In Prism, this style of navigation is referred to as view-based navigation.

Depending on the requirements of the application, this process can be fairly complex and require careful coordination. The following are common challenges that often have to be addressed when implementing view-based navigation:

	The target of the navigation—the container or host control of the views to be added or removed—may handle navigation differently as views are added or removed from it, or they may visually represent navigation in different ways. In many cases, the navigation target will be a simple Frame or ContentControl, and navigated views will simply be displayed within these controls. However, there are many scenarios where the target for the navigation operation is a different type of container control, such as a TabControl or a ListBox control. In these cases, navigation may require the activation or selection of an existing view or the addition of new view is a specific way.

	The application will also often have to define how the view to be navigated to is identified. For example, in a web application, the page to be navigated to is often directly identified by a Uniform Resource Identifier (URI). In a client application, the view can be identified by type name, resource location, or in a variety of different ways. Furthermore, in a composite application, which is composed from loosely coupled modules, the views will often be defined in separate modules. Individual views will need to be identified in a way that does not introduce tight coupling and dependencies between modules.

	After the view is identified, the process by which the new view is instantiated and initialized has to be carefully coordinated. This can be particularly important when using the MVVM pattern. In this case, the view and view model may need to be instantiated and associated with each other via the view’s data context during the navigation operation. In the case when the application is leveraging a dependency injection container, such as the Unity Application Block (Unity) or the Managed Extensibility Framework (MEF), the instantiation of the views and/or view models (and other dependent classes) may have to be achieved using a specific construction mechanism.

	The MVVM pattern provides a separation between the application’s UI and its presentation and business logic. However, the navigational behavior of the application will often span UI and presentation logic parts of the application. The user will often initiate navigation from within the view, and the view will be updated as a result of that navigation, but navigation will often also need to be initiated or coordinated from within the view model. The ability to cleanly separate the navigational behavior of the application across the view and view model is an important aspect to consider.

	An application will also often need to pass parameters or context to the view so that it can be initialized properly. For example, if the user navigates to a view to update the details of a specific customer, the customer’s ID or data will have to be passed to the view so that it can display the correct information.

	Many applications will also have to carefully coordinate navigation to ensure that certain business rules are obeyed. For example, users may be prompted before navigating away from a view so that they can correct any invalid data or be prompted to submit or discard any data changes that they have made within that view. This process requires careful coordination between the previous view and the new view.

	Lastly, most modern applications allow the user to easily navigate backward (or forward) to previously displayed views. Similarly, some applications implement their workflows using a sequence of views or forms and allow users to navigate forward or backward through them, adding or updating data as they go, before completing the task and submitting all their changes at one time. These scenarios require some kind of journaling (or history) mechanism so that the sequence of navigation can be stored, replayed, or pre-defined.

Prism provides support and guidance for these challenges by extending Prism’s region mechanism to support navigation. The following sections provide a brief summary of Prism regions and describe how they have been extended to support view-based navigation.

Prism Region Overview

Prism regions are designed to support the development of composite applications (that is, applications that consist of multiple modules) by allowing the application’s overall UI to be constructed in a loosely-coupled way. Regions allow views defined in a module to be displayed within the application’s UI without requiring the module to have explicit knowledge of the application’s overall UI structure. They allow the layout of the application’s UI to be changed easily, thereby allowing the UI designer to choose the most appropriate UI design and layout for the application without requiring changes in the modules themselves.

Prism regions are essentially named placeholders within which views can be displayed. Any control in the application’s UI can be a declared a region by simply adding a RegionName attached property to it, as shown here.

<ContentControl prism:RegionManager.RegionName="MainRegion" ... />

For each control specified as a region, Prism creates a Region object to represent the region and a RegionAdapter object, which manages the placement and activation of views into the specified control. The Prism Library provides RegionAdapter implementations for most of the common WPF controls. You can create a custom RegionAdapter to support additional controls or when you need to define a custom behavior. The RegionManager class provides access to the Region objects within the application.

In many cases, the region control will be a simple control, such as a ContentControl, that can display one view at a time. In other cases, the Region control will be a control that is able to display multiple views at the same time, such as a TabControl or a ListBox control.

The region adapter manages a list of views within the associated region. One or more of these views will be displayed in the region control according to its defined layout strategy. Views can be assigned a name that can be used to retrieve that view later on. The region adapter manages the active state of the views within the region. The active view is the view that is the selected or top-most view—for example, in a TabControl, the active view is the one displayed in the selected tab; in a ContentControl, the active view is the view that is currently displayed as the control’s content.

Note: The active state of a view is important to consider during navigation. Frequently, you will want the active view to participate in navigation so that it can save data before the user navigates away from it, or so that it can confirm or cancel the navigation operation.

Previous versions of Prism allowed views to be displayed in a region in two ways. The first, called view injection, allows views to be programmatically displayed in a region. This approach is useful for dynamic content, where the view to be displayed in the region changes frequently, according to the application’s presentation logic.

View injection is supported through the Add method on the Region class. The follow code example shows how you can obtain a reference to a Region object via the RegionManager class and programmatically add a view to it. In this example, the view is created using a dependency injection container.

 IRegionManager regionManager = ...;
 IRegion mainRegion = regionManager.Regions["MainRegion"];
 InboxView view = this.container.Resolve<InboxView>();
 mainRegion.Add(view);

The second method, called view discovery, allows a module to register a view type against a region name. Whenever a region with the specified name is displayed, an instance of the specified view will be automatically created and displayed in the region. This approach is useful for relatively static content, where the view to be displayed in a region does not change.

View discovery is supported through the RegisterViewWithRegion method on the RegionManager class. This method allows you to specify a callback method that will be called when the named region is shown. The following code example shows how you can create a view (via the dependency injection container) when the main region is first shown.

 IRegionManager regionManager = ...;
 regionManager.RegisterViewWithRegion("MainRegion", () =>
 container.Resolve<InboxView>());

For a detailed overview of Prisms region support and information about how to leverage regions to compose the application’s UI using view injection and discovery, see Composing the User Interface. The rest of this topic describes how regions have been extended to support view-based navigation, and how this addresses the various challenges described earlier.

Basic Region Navigation

Both view injection and view discovery can be considered to be limited forms of navigation–view injection is a form of explicit, programmatic navigation, and view discovery is a form of implicit or deferred navigation. However, in Prism 4.0, regions have been extended to support a more general notion of navigation, based on URIs and an extensible navigation mechanism.

Navigation within a region means that a new view is to be displayed within that region. The view to be displayed is identified via a URI, which, by default, refers to the name of the view to be created. You can programmatically initiate navigation using the RequestNavigate method defined by the INavigateAsync interface.

Note: Despite its name, the INavigateAsync interface does not represent asynchronous navigation that’s carried out on a separate background thread. Instead, the INavigateAsync interface represents the ability to perform pseudo-asynchronous navigation. The RequestNavigate method may return synchronously following the completion of navigation operation, or it may return while a navigation operation is still pending, as in the case where the user needs to confirm the navigation. By allowing you to specify callbacks and continuations during navigation, Prism provides a mechanism to enable these scenarios without requiring the complexity of navigating on a background thread.

The INavigateAsync interface is implemented by the Region class, allowing you to initiate navigation within that region.

IRegion mainRegion = ...;
mainRegion.RequestNavigate(new Uri("InboxView", UriKind.Relative));

You can also call the RequestNavigate method on the RegionManager, which allows you to specify the name of the region to be navigated. This convenient method obtains a reference to the specified region and then calls the RequestNavigate method, as shown in the preceding code example.

IRegionManager regionManager = ...;
regionManager.RequestNavigate("MainRegion",
 new Uri("InboxView", UriKind.Relative));

By default, the navigation URI specifies the name of a view that is registered in the container.

Using MEF, you can simply export the view type with the specified name.

[Export("InboxView")]
public partial class InboxView : UserControl { ... }

During navigation, the specified view is instantiated, via the container or MEF, along with its corresponding view model and other dependent services and components. After the view is instantiated, it is then added to the specified region and activated (activation is described in more detail later in this topic).

Note: The preceding description illustrates view-first navigation, where the URI refers to the name of the view type, as it is exported or registered with the container. With view-first navigation, the dependent view model is created as a dependency of the view. An alternative approach is to use view model–first navigation, where the navigation URI refers to the name of the view model type, as it is exported or registered with the container. View model–first navigation is useful when the view is defined as a data template, or when you want your navigation scheme to be defined independently of the views.

The RequestNavigate method also allows you to specify a callback method, or a delegate, which will be called when navigation is complete.

private void SelectedEmployeeChanged(object sender, EventArgs e)
{
 ...
 regionManager.RequestNavigate(RegionNames.TabRegion,
 "EmployeeDetails", NavigationCompleted);
}
private void NavigationCompleted(NavigationResult result)
{
 ...
}

The NavigationResult class defines properties that provide information about the navigation operation. The Result property indicates whether or not navigation succeeded. If navigation was successful, then the Result property will be true. If navigation failed, normally because of returning ‘continuationCallBack(false)’ in the IConfirmNavigationResult.ConfirmNavigationRequest method, then the Result property will be false. If navigation failed due to an exception, the Result property will be false and the Error property provides a reference to any exception that was thrown during navigation. The Context property provides access to the navigation URI and any parameters it contains, and a reference to the navigation service that coordinated the navigation operation.

View and View Model Participation in Navigation

Frequently, the views and view models in your application will want to participate in navigation. The INavigationAware interface enables this. You can implement this interface on the view or (more commonly) the view model. By implementing this interface, your view or view model can opt-in to participate in the navigation process.

Note: In the description that follows, although a reference is made to calls to this interface during navigation between views, it should be noted that the INavigationAware interface will be called during navigation whether it is implemented by the view or by the view model.
During navigation, Prism checks to see whether the view implements the INavigationAware interface; if it does, it calls the required methods during navigation. Prism also checks to see whether the object set as the view’s DataContext implements this interface; if it does, it calls the required methods during navigation.

This interface allows the view or view model to participate in a navigation operation. The INavigationAware interface defines three methods.

public interface INavigationAware
{
 bool IsNavigationTarget(NavigationContext navigationContext);
 void OnNavigatedTo(NavigationContext navigationContext);
 void OnNavigatedFrom(NavigationContext navigationContext);
}

The IsNavigationTarget method allows an existing (displayed) view or view model to indicate whether it is able to handle the navigation request. This is useful in cases where you can re-use an existing view to handle the navigation operation or when navigating to a view that already exists. For example, a view displaying customer information can be updated to display a different customer’s information. For more information about using this method, see the section, Navigating to Existing Views, later in this topic.

The OnNavigatedFrom and OnNavigatedTo methods are called during a navigation operation. If the currently active view in the region implements this interface (or its view model), its OnNavigatedFrom method is called before navigation takes place. The OnNavigatedFrom method allows the previous view to save any state or to prepare for its deactivation or removal from the UI, for example, to save any changes that the user has made to a web service or database.

If the newly created view implements this interface (or its view model), its OnNavigatedTo method is called after navigation is complete. The OnNavigatedTo method allows the newly displayed view to initialize itself, potentially using any parameters passed to it on the navigation URI. For more information, see the next section, Passing Parameters During Navigation.

After the new view is instantiated, initialized, and added to the target region, it then becomes the active view, and the previous view is deactivated. Sometimes you will want the deactivated view to be removed from the region. Prism provides the IRegionMemberLifetime interface, which allows you to control the lifetime of views within regions by allowing you to specify whether deactivated views are to be removed from the region or simply marked as deactivated.

public class EmployeeDetailsViewModel : IRegionMemberLifetime
{
 public bool KeepAlive
 {
 get { return true; }
 }
}

The IRegionMemberLifetime interface defines a single read-only property, KeepAlive. If this property returns false, the view is removed from the region when it is deactivated. Because the region no longer has a reference to the view, it then becomes eligible for garbage collection (unless some other component in your application maintains a reference to it). You can implement this interface on your view or your view model classes. Although the IRegionMemberLifetime interface is primarily intended to allow you to manage the lifetime of views within regions during activation and deactivation, the KeepAlive property is also considered during navigation after the new view is activated in the target region.

Note: Regions that can display multiple views, such as those that use an ItemsControl or a TabControl, will display both non-active and active views. Removal of a non-active view from these types of regions will result in the view being removed from the UI.

Passing Parameters During Navigation

To implement the required navigational behavior in your application, you will often need to specify additional data during navigation request than just the target view name. The NavigationContext object provides access to the navigation URI, and to any parameters that were specified within it or externally. You can access the NavigationContext from within the IsNavigationTarget, OnNavigatedFrom, and OnNavigatedTo methods.

Prism provides the NavigationParameters class to help specify and retrieve navigation parameters. The NavigationParameters class maintains a list of name-value pairs, one for each parameter. You can use this class to pass parameters as part of navigation URI or for passing object parameters.

The following code example shows how to add individual string parameters to the NavigationParameters instance so that it can be appended to the navigation URI.

Employee employee = Employees.CurrentItem as Employee;
if (employee != null)
{
 var navigationParameters = new NavigationParameters();
 navigationParameters.Add("ID", employee.Id);
 _regionManager.RequestNavigate(RegionNames.TabRegion,
 new Uri("EmployeeDetailsView" + navigationParameters.ToString(), UriKind.Relative));
}

Additionally, you can pass object parameters by adding them to the NavigationParameters instance, and passing it as a parameter of the RequestNavigate method. This is shown in the following code.

Employee employee = Employees.CurrentItem as Employee;
if (employee != null)
{
 var parameters = new NavigationParameters();
 parameters.Add("ID", employee.Id);
 parameters.Add("myObjectParameter", new ObjectParameter());
 regionManager.RequestNavigate(RegionNames.TabRegion,
 new Uri("EmployeeDetailsView", UriKind.Relative), parameters);
}

You can retrieve the navigation parameters using the Parameters property on the NavigationContext object. This property returns an instance of the NavigationParameters class, which provides an indexer property to allow easy access to individual parameters, independently of them being passed through the query or through the RequestNavigate method.

public void OnNavigatedTo(NavigationContext navigationContext)
{
 string id = navigationContext.Parameters["ID"];
 ObjectParameter myParameter = navigationContext.Parameters["myObjectParameter"];
}

Navigating to Existing Views

Frequently, it is more appropriate for the views in your application to be re-used, updated, or activated during navigation, instead of replaced by a new view. This is often the case where you are navigating to the same type of view but need to display different information or state to the user, or when the appropriate view is already available in the UI but needs to be activated (that is, selected or made top-most).

For an example of the first scenario, imagine that your application allows the user to edit customer records, using the EditCustomer view, and the user is currently using that view to edit customer ID 123. If the customer decides to edit the customer record for customer ID 456, the user can simply navigate to the EditCustomer view and enter the new customer ID. The EditCustomer view can then retrieve the data for the new customer and update its UI accordingly.

An example of the second scenario is where the application allows the user to edit more than one customer record at a time. In this case, the application displays multiple EditCustomer view instances in a tab control—for example, one for customer ID 123 and another for customer ID 456. When the user navigates to the EditCustomer view and enters customer ID 456, the corresponding view will be activated (that is, its corresponding tab will be selected). If the user navigates to the EditCustomer view and enters customer ID 789, a new instance will be created and displayed in the tab control.

The ability to navigate to an existing view is useful for a variety of reasons. It is often more efficient to update an existing view instead of replace it with a new instance of the same type. Similarly, activating an existing view, instead of creating a duplicate view, provides a more consistent user experience. In addition, the ability to handle these situations seamlessly without requiring much custom code means that the application is easier to develop and maintain.

Prism supports the two scenarios described earlier via the IsNavigationTarget method on the INavigationAware interface. This method is called during navigation on all views in a region that are of the same type as the target view. In the preceding examples, the target type of the view is the EditCustomer view, so the IsNavigationTarget method will be called on all existing EditCustomer view instances currently in the region. Prism determines the target type from the view URI, which it assumes is the short type name of the target type.

Note: For Prism to determine the type of the target view, the view’s name in the navigation URI should be the same as the actual target type’s short type name. For example, if your view is implemented by the MyApp.Views.EmployeeDetailsView class, the view name specified in the navigation URI should be EmployeeDetailsView. This is the default behavior provided by Prism. You can customize this behavior by implementing a custom content loader class; you can do this by implementing the IRegionNavigationContentLoader interface or by deriving from the RegionNavigationContentLoader class.

The implementation of the IsNavigationTarget method can use the NavigationContext parameter to determine whether it can handle the navigation request. The NavigationContext object provides access to the navigation URI and the navigation parameters. In the preceding examples, the implementation of this method in the EditCustomer view model compares the current customer ID to the ID specified in the navigation request, and it returns true if they match.

public bool IsNavigationTarget(NavigationContext navigationContext)
{
 string id = navigationContext.Parameters["ID"];
 return _currentCustomer.Id.Equals(id);
}

If the IsNavigationTarget method always returns true, regardless of the navigation parameters, that view instance will always be re-used. This allows you to ensure that only one view of a particular type will be displayed in a particular region.

Confirming or Cancelling Navigation

You will often find that you will need to interact with the user during a navigation operation, so that the user can confirm or cancel it. In many applications, for example, the user may try to navigate while in the middle of entering or editing data. In these situations, you may want to ask the user whether he or she wants to save or discard the data that has been entered before continuing to navigate away from the page, or whether the user wants to cancel the navigation operation altogether. Prism supports these scenarios via the IConfirmNavigationRequest interface.

The IConfirmNavigationRequest interface derives from the INavigationAware interface and adds the ConfirmNavigationRequest method. By implementing this interface on your view or view model class, you allow them to participate in the navigation sequence in a way that allows them to interact with the user so that the user can confirm or cancel the navigation. You will often use an Interaction Request object, as described in in Advanced MVVM Scenarios, to display a confirmation pop-up window.

Note: The ConfirmNavigationRequest method is called on the active view or view model, similar to the OnNavigatedFrom method described earlier.

The ConfirmNavigationRequest method provides two parameters, a reference to the current navigation context as described earlier, and a callback method that you can call when you want navigation to continue. For this reason, the callback is known as a continuation callback. You can store a reference to the continuation callback so the application can call it after it finishes interacting with the user. If your application interacts with the user through an Interaction Request object, you can chain the call to the continuation callback to the callback from the interaction request. The following diagram illustrates the overall process.

[image: Confirming Navigation Using an InteractionRequest Object]

The following steps summarize the process of confirming navigation using an InteractionRequest object:

	Navigation operation is initiated via a RequestNavigate call.

	If the view or view model implements IConfirmNavigation, call ConfirmNavigationRequest.

	The view model raises the interaction request event.

	The view displays the confirmation pop-up window and awaits the user’s response.

	The interaction request callback is invoked when the user closes the pop-up window.

	Continuation callback is invoked to continue or cancel the pending navigation operation.

	The navigation operation is completed or canceled.

To illustrate this, look at the View-Switching Navigation Quick Start. This application provides the ability for the user to compose a new email using the ComposeEmailView and ComposeEmailViewModel classes. The view model class implements the IConfirmNavigation interface. If the user navigates, such as by clicking the Calendar button, when they are composing an email, the ConfirmNavigationRequest method will be called so that the view model can confirm the navigation with the user. To support this, the view model class defines an interaction request, as shown in the following code example.

public class ComposeEmailViewModel : NotificationObject, IConfirmNavigationRequest
{
 . . .
 private readonly InteractionRequest<Confirmation> confirmExitInteractionRequest;

 public ComposeEmailViewModel(IEmailService emailService)
 {
 . . .
 this.confirmExitInteractionRequest = new InteractionRequest<Confirmation>();
 }

 public IInteractionRequest ConfirmExitInteractionRequest
 {
 get { return this.confirmExitInteractionRequest; }
 }
}

In the ComposeEmailView class, an interaction request trigger is defined, and data is bound to the ConfirmExitInteractionRequest property on the view model. When the interaction request is made, a simple pop-up window will be displayed to the user.

<UserControl.Resources>
 <DataTemplate x:Key="ConfirmExitDialogTemplate">
 <TextBlock HorizontalAlignment="Center" VerticalAlignment="Center"
 Text="{Binding}"/>
 </DataTemplate>
</UserControl.Resources>

<Grid x:Name="LayoutRoot" Background="White">
<ei:Interaction.Triggers>
 <prism:InteractionRequestTrigger SourceObject="{Binding
 ConfirmExitInteractionRequest}">
 <prism:PopupWindowAction IsModal="True" CenterOverAssociatedObject="True"/>
 </prism:InteractionRequestTrigger>
</ei:Interaction.Triggers>
...

The ConfirmNavigationRequest method on the ComposeEmailVewModel class is called if the user attempts to navigate while an email is being composed. The implementation of this method invokes the interaction request defined earlier so that the user can confirm or cancel the navigation operation.

void IConfirmNavigationRequest.ConfirmNavigationRequest(
 NavigationContext navigationContext, Action<bool> continuationCallback)
{
 . . .
 this.confirmExitInteractionRequest.Raise(
 new Confirmation {Content = "...", Title = "..."},
 c => {continuationCallback(c.Confirmed);});
}

The callback for the interaction request is called when the user clicks the buttons in the confirmation pop-up window to confirm or cancel the operation. This callback simply calls the continuation callback, passing in the value of the Confirmed flag, and causing the navigation to continue or be canceled.

Note: It should be noted that after the interaction request event is raised, the ConfirmNavigationRequest method immediately returns so that the user can continue to interact with the UI of the application. When the user clicks the OK or Cancel buttons on the pop-up window, the callback method of the interaction request is made, which in turn calls the continuation callback to complete the navigation operation. All the methods are called on the UI thread. Using this technique, no background threads are required.

Using this mechanism, you can control if the navigation request is carried out immediately or is deferred, pending an interaction with the user or some other asynchronous interaction (for example, as a result of a web service request). To enable navigation to proceed, you can simply call the continuation callback method, passing true to indicate that it can continue. Similarly, you can pass false to indicate that the navigation should be canceled.

void IConfirmNavigationRequest.ConfirmNavigationRequest(
 NavigationContext navigationContext, Action<bool> continuationCallback)
{
 continuationCallback(true);
}

If you want to defer navigation, you can store a reference to the continuation callback you can then call when the interaction with the user (or web service) completes. The navigation operation will be pending until you call the continuation callback.

If the user initiates another navigation operation in the meantime, the navigation request then becomes canceled. In this case, calling the continuation callback has no effect because the navigation operation to which it relates is no longer current. Similarly, if you decide not to call the continuation callback, the navigation operation will be pending until it is replaced with a new navigation operation.

Using the Navigation Journal

The NavigationContext class provides access to the region navigation service, which is responsible for coordinating the sequence of operations during navigation within a region. It provides access to the region in which navigation is taking place, and to the navigation journal associated with that region. The region navigation service implements the IRegionNavigationService, which is defined as follows.

public interface IRegionNavigationService : INavigateAsync
{
 IRegion Region {get; set;}
 IRegionNavigationJournal Journal {get;}
 event EventHandler<RegionNavigationEventArgs> Navigating;
 event EventHandler<RegionNavigationEventArgs> Navigated;
 event EventHandler<RegionNavigationFailedEventArgs> NavigationFailed;
}

Because the region navigation service implements the INavigateAsync interface, you can initiate navigation within the parent region by calling its RequestNavigate method. The Navigating event is raised when a navigation operation is initiated. The Navigated event is raised when navigation within a region is completed. The NavigationFailed is raised if an error was encountered during navigation.

The Journal property provides access to the navigation journal associated with the region. The navigation journal implements the IRegionNavigationJournal interface, which is defined as follows.

public interface IRegionNavigationJournal
{
 bool CanGoBack { get; }
 bool CanGoForward { get; }
 IRegionNavigationJournalEntry CurrentEntry { get; }
 INavigateAsync NavigationTarget { get; set; }
 void Clear();
 void GoBack();
 void GoForward();
 void RecordNavigation(IRegionNavigationJournalEntry entry);
}

You can obtain and store a reference to the region navigation service within a view during navigation via the OnNavigatedTo method call. By default, Prism provides a simple stack-based journal that allows you to navigate forward or backward within a region.

You can use the navigation journal to allow the user to navigate from within the view itself. In the following example, the view model implements a GoBack command, which uses the navigation journal within the host region. Therefore, the view can display a Back button that allows the user to easily navigate back to the previous view within the region. Similarly, you can implement a GoForward command to implement a wizard style workflow.

public class EmployeeDetailsViewModel : INavigationAware
{
 ...
 private IRegionNavigationService navigationService;

 public void OnNavigatedTo(NavigationContext navigationContext)
 {
 navigationService = navigationContext.NavigationService;
 }

 public DelegateCommand<object> GoBackCommand { get; private set; }

 private void GoBack(object commandArg)
 {
 if (navigationService.Journal.CanGoBack)
 {
 navigationService.Journal.GoBack();
 }
 }

 private bool CanGoBack(object commandArg)
 {
 return navigationService.Journal.CanGoBack;
 }
}

You can implement a custom journal for a region if you need to implement a specific workflow pattern within that region.

Note: The navigation journal can only be used for region-based navigation operations that are coordinated by the region navigation service. If you use view discovery or view injection to implement navigation within a region, the navigation journal will not be updated during navigation and cannot be used to navigate forward or backward within that region.

Using the WPF Navigation Framework

Prism region navigation was designed to address a wide range of common scenarios and challenges that you may face when implementing navigation in a loosely-coupled, modular application that uses the MVVM pattern and a dependency injection container, such as Unity, or the Managed Extensibility Framework (MEF). It also was designed to support navigation confirmation and cancellation, navigation to existing views, navigation parameters and navigation journaling.

By supporting navigation within Prism regions, it also supports navigation within a wide range of layout controls and supports the ability to change the layout of the application’s UI without affecting its navigation structure. It also supports pseudo-synchronous navigation, which allows for rich user interaction during navigation.

However, the Prism region navigation was not designed to replace WPF’s navigation framework. Instead, Prism region navigation was designed to be used side-by-side with the WPF navigation framework.

The WPF navigation framework is difficult to use to support the MVVM pattern and dependency injection. It is also based on a Frame control that provides similar functionality in terms of journaling and navigation UI. You can use the WPF navigation framework alongside Prism region navigation, though it may be easier and more flexible to implement navigation using only Prism regions.

The Region Navigation Sequence

The following illustration provides an overview of the sequence of operations during a navigation operation. It is provided for reference so that you can see how the various elements of the Prism region navigation work together during a navigation request.

[image: Prism region navigation sequence]

More Information

For more information about Prism regions, see Composing the User Interface.

For more information about the MVVM pattern and Interaction Request pattern, see Implementing the MVVM Pattern and Advanced MVVM Scenarios.

For more information about the Interaction Request object, Using Interaction Request Objects in Advanced MVVM Scenarios.

For more information about the Visual State Manager, see VisualStateManager Class [http://msdn.microsoft.com/en-us/library/cc626338(v=VS.95).aspx] on MSDN.

For more information about using Microsoft Blend behaviors, see Working with built-in behaviors [http://msdn.microsoft.com/en-us/library/ff724013(v=Expression.40).aspx] on MSDN.

For more information about creating custom behaviors with Microsoft Blend, see Creating Custom Behaviors [http://msdn.microsoft.com/en-us/library/ff724708(v=Expression.40).aspx] on MSDN.

 Managing Dependencies Between Components Using the Prism Library for WPF

Managing Dependencies Between Components Using the Prism Library for WPF

Applications based on the Prism Library are composite applications that potentially consist of many loosely coupled types and services. They need to interact to contribute content and receive notifications based on user actions. Because they are loosely coupled, they need a way to interact and communicate with one another to deliver the required business functionality. To tie together these various pieces, applications based on the Prism Library rely on a dependency injection container.

Dependency injection containers reduce the dependency coupling between objects by providing a facility to instantiate instances of classes and manage their lifetime based on the configuration of the container. During the objects creation, the container injects any dependencies that the object requires into it. If those dependencies have not yet been created, the container creates and resolves their dependencies first. In some cases, the container itself is resolved as a dependency. For example, when using the Unity Application Block (Unity) as the container, modules have the container injected, so they can register their views and services with that container.

There are several advantages of using a container:

	A container removes the need for a component to locate its dependencies or manage their lifetimes.

	A container allows swapping of implemented dependencies without affecting the component.

	A container facilitates testability by allowing dependencies to be mocked.

	A container increases maintainability by allowing new components to be easily added to the system.

In the context of an application based on the Prism Library, there are specific advantages to a container:

	A container injects module dependencies into the module when it is loaded.

	A container is used for registering and resolving view models and views.

	A container can create the view models and injects the view.

	A container injects the composition services, such as the region manager and the event aggregator.

	A container is used for registering module-specific services, which are services that have module-specific functionality.

Note: Some samples in the Prism guidance rely on the Unity Application Block (Unity) as the container. Other code samples, for example the Modularity QuickStarts, use Managed Extensibility Framework (MEF). The Prism Library itself is not container-specific, and you can use its services and patterns with other containers, such as Castle Windsor, StructureMap, and Spring.NET.

Key Decision: Choosing a Dependency Injection Container

The Prism Library provides two options for dependency injection containers: Unity or MEF. Prism is extensible, thereby allowing other containers to be used instead with a little bit of work. Both Unity and MEF provide the same basic functionality for dependency injection, even though they work very differently. Some of the capabilities provided by both containers include the following:

	They both register types with the container.

	They both register instances with the container.

	They both imperatively create instances of registered types.

	They both inject instances of registered types into constructors.

	They both inject instances of registered types into properties.

	They both have declarative attributes for marking types and dependencies that need to be managed.

	They both resolve dependencies in an object graph.

Unity provides several capabilities that MEF does not:

	It resolves concrete types without registration.

	It resolves open generics.

	It uses interception to capture calls to objects and add additional functionality to the target object.

MEF provides several capabilities that Unity does not:

	It discovers assemblies in a directory.

	It uses XAP file download and assembly discovery.

	It recomposes properties and collections as new types are discovered.

	It automatically exports derived types.

	It is deployed with the .NET Framework.

The containers have differences in capabilities and work differently, but the Prism Library will work with either container and provide similar functionality. When considering which container to use, keep in mind the preceding capabilities and determine which fits your scenario better.

Considerations for Using the Container

You should consider the following before using containers:

	Consider whether it is appropriate to register and resolve components using the container:
	Consider whether the performance impact of registering with the container and resolving instances from it is acceptable in your scenario. For example, if you need to create 10,000 polygons to draw a surface within the local scope of a rendering method, the cost of resolving all of those polygon instances through the container might have a significant performance cost because of the container’s use of reflection for creating each entity.

	If there are many or deep dependencies, the cost of creation can increase significantly.

	If the component does not have any dependencies or is not a dependency for other types, it may not make sense to put it in the container.

	If the component has a single set of dependencies that are integral to the type and will never change, it may not make sense to put it in the container.

	Consider whether a component’s lifetime should be registered as a singleton or instance:
	If the component is a global service that acts as a resource manager for a single resource, such as a logging service, you may want to register it as a singleton.

	If the component provides shared state to multiple consumers, you may want to register it as a singleton.

	If the object that is being injected needs to have a new instance of it injected each time a dependent object needs one, register it as a non-singleton. For example, each view probably needs a new instance of a view model.

	Consider whether you want to configure the container through code or configuration:
	If you want to centrally manage all the different services, configure the container through configuration.

	If you want to conditionally register specific services, configure the container through code.

	If you have module-level services, consider configuring the container through code so that those services are registered only if the module is loaded.

Note: Some containers, such as MEF, cannot be configured via a configuration file and must be configured via code.

Core Scenarios

Containers are used for two primary purposes, namely registering and resolving.

Registering

Before you can inject dependencies into an object, the types of the dependencies need to be registered with the container. Registering a type typically involves passing the container an interface and a concrete type that implements that interface. There are primarily two means for registering types and objects: through code or through configuration. The specific means vary from container to container.

Typically, there are two ways of registering types and objects in the container through code:

	You can register a type or a mapping with the container. At the appropriate time, the container will build an instance of the type you specify.

	You can register an existing object instance in the container as a singleton. The container will return a reference to the existing object.

Registering Types with the Unity Container

During initialization, a type can register other types, such as views and services. Registration allows their dependencies to be provided through the container and allows them to be accessed from other types. To do this, the type will need to have the container injected into the module constructor. The following code shows how the OrderModule type in the Commanding QuickStart registers a type.

// OrderModule.cs
public class OrderModule : IModule
{
 public void Initialize()
 {
 this.container.RegisterType<IOrdersRepository, OrdersRepository>(new ContainerControlledLifetimeManager());
 ...
 }
 ...
}

Depending on which container you use, registration can also be performed outside the code through configuration. For an example of this, see in .

Note: The advantage of registering in code, compared to configuration, is that the registration happens only if the module loads.

Registering Types with MEF

MEF uses an attribute-based system for registering types with the container. As a result, adding type registration to the container is simple: it requires the addition of the [Export] attribute to a type as shown in the following code example.

[Export(typeof(ILoggerFacade))]
public class CallbackLogger: ILoggerFacade
{
}

Another option when using MEF is to create an instance of a class and register that particular instance with the container. The QuickStartBootstrapper in the Modularity with MEF QuickStart shows an example of this in the ConfigureContainer method, as shown here.

protected override void ConfigureContainer()
{
 base.ConfigureContainer();

 // Because we created the CallbackLogger and it needs to
 // be used immediately, we compose it to satisfy any imports it has.
 this.Container.ComposeExportedValue<CallbackLogger>(this.callbackLogger);
}

Note: When using MEF as your container, it is recommended that you use attributes to register types.

Resolving

After a type is registered, it can be resolved or injected as a dependency. When a type is being resolved, and the container needs to create a new instance, it injects the dependencies into these instances.

In general, when a type is resolved, one of three things happens:

	If the type has not been registered, the container throws an exception.

Note: Some containers, including Unity, allow you to resolve a concrete type that has not been registered.

	If the type has been registered as a singleton, the container returns the singleton instance. If this is the first time the type was called for, the container creates it and holds on to it for future calls.

	If the type has not been registered as a singleton, the container returns a new instance.

Note: By default, types registered with MEF are singletons and the container holds a reference to the object. In Unity, new instances of objects are returned by default, and the container does not maintain a reference to the object.

Resolving Instances with Unity

The following code example from the Commanding QuickStart shows where the OrdersEditorView and OrdersToolBar views are resolved from the container to associate them to the corresponding regions.

// OrderModule.cs
public class OrderModule : IModule
{
 public void Initialize()
 {
 this.container.RegisterType<IOrdersRepository, OrdersRepository>(new ContainerControlledLifetimeManager());

 // Show the Orders Editor view in the shell's main region.
 this.regionManager.RegisterViewWithRegion("MainRegion",
 () => this.container.Resolve<OrdersEditorView>());

 // Show the Orders Toolbar view in the shell's toolbar region.
 this.regionManager.RegisterViewWithRegion("GlobalCommandsRegion",
 () => this.container.Resolve<OrdersToolBar>());
 }
 ...
}

The OrdersEditorViewModel constructor contains the following dependencies (the orders repository and the orders command proxy), which are injected when it is resolved.

// OrdersEditorViewModel.cs
public OrdersEditorViewModel(IOrdersRepository ordersRepository, OrdersCommandProxy commandProxy)
{
 this.ordersRepository = ordersRepository;
 this.commandProxy = commandProxy;

 // Create dummy order data.
 this.PopulateOrders();

 // Initialize a CollectionView for the underlying Orders collection.
 this.Orders = new ListCollectionView(_orders);
 // Track the current selection.
 this.Orders.CurrentChanged += SelectedOrderChanged;
 this.Orders.MoveCurrentTo(null);
}

In addition to the constructor injection shown in the preceding code, Unity also allows for property injection. Any properties that have a [Dependency] attribute applied are automatically resolved and injected when the object is resolved.

Resolving Instances with MEF

The following code example shows how the Bootstrapper in the Modularity with MEF QuickStart obtains an instance of the shell. Instead of requesting a concrete type, the code could request an instance of an interface.

protected override DependencyObject CreateShell()
{
 return this.Container.GetExportedValue<Shell>();
}

In any class that is resolved by MEF, you can also use constructor injection, as shown in the following code example from ModuleA in the Modularity with MEF QuickStart, which has an ILoggerFacade and an IModuleTracker injected.

[ImportingConstructor]
public ModuleA(ILoggerFacade logger, IModuleTracker moduleTracker)
{
 if (logger == null)
 {
 throw new ArgumentNullException("logger");
 }
 if (moduleTracker == null)
 {
 throw new ArgumentNullException("moduleTracker");
 }
 this.logger = logger;
 this.moduleTracker = moduleTracker;
 this.moduleTracker.RecordModuleConstructed(WellKnownModuleNames.ModuleA);
}

Another option is to use property injection, as shown in the ModuleTracker class from the Modularity with MEF QuickStart, which has an instance of the ILoggerFacade injected.

[Export(typeof(IModuleTracker))]
public class ModuleTracker : IModuleTracker
{
 [Import] private ILoggerFacade Logger;
}

Using Dependency Injection Containers and Services in Prism

Dependency injection containers, often referred to as just “containers,” are used to satisfy dependencies between components; satisfying these dependencies typically involves registration and resolution. The Prism Library provides support for the Unity container and for MEF, but it is not container-specific. Because the library accesses the container through the IServiceLocator interface, the container can be replaced. To do this, your container must implement the IServiceLocator interface. Usually, if you are replacing the container, you will also need to provide your own container-specific bootstrapper. The IServiceLocator interface is defined in the Common Service Locator Library. This is an open source effort to provide an abstraction over IoC (Inversion of Control) containers, such as dependency injection containers, and service locators. The objective of using this library is to leverage IoC and Service Location without tying to a specific implementation.

The Prism Library provides the UnityServiceLocatorAdapter and the MefServiceLocatorAdapter. Both adapters implement the ISeviceLocator interface by extending the ServiceLocatorImplBase type. The following illustration shows the class hierarchy.

[image: Common Service Locator implementations in Prism]

Although the Prism Library does not reference or rely on a specific container, it is typical for an application to rely on a specific container. This means that it is reasonable for a specific application to refer to the container, but the Prism Library does not refer to the container directly. For example, the Stock Trader RI and several of the QuickStarts included with Prism rely on Unity as the container. Other samples and QuickStarts rely on MEF.

IServiceLocator

The following code shows the IServiceLocator interface.

public interface IServiceLocator : IServiceProvider
{
 object GetInstance(Type serviceType);
 object GetInstance(Type serviceType, string key);
 IEnumerable<object> GetAllInstances(Type serviceType);
 TService GetInstance<TService>();
 TService GetInstance<TService>(string key);
 IEnumerable<TService> GetAllInstances<TService>();
}

The Service Locator is extended in the Prism Library with the extension methods shown in the following code. You can see that IServiceLocator is used only for resolving, meaning it is used to obtain an instance; it is not used for registration.

// ServiceLocatorExtensions
public static class ServiceLocatorExtensions
{
 public static object TryResolve(this IServiceLocator locator, Type type)
 {
 try
 {
 return locator.GetInstance(type);
 }
 catch (ActivationException)
 {
 return null;
 }
 }

 public static T TryResolve<T>(this IServiceLocator locator) where T: class
 {
 return locator.TryResolve(typeof(T)) as T;
 }
}

The TryResolve extension method—which the Unity container does not support—returns an instance of the type to be resolved if it has been registered; otherwise, it returns null.

The ModuleInitializer uses IServiceLocator for resolving the module during module loading, as shown in the following code examples.

// ModuleInitializer.cs - Initialize()
IModule moduleInstance = null;
try
{
 moduleInstance = this.CreateModule(moduleInfo);
 moduleInstance.Initialize();
}
...

// ModuleInitializer.cs - CreateModule()
protected virtual IModule CreateModule(string typeName)
{
 Type moduleType = Type.GetType(typeName);

 if (moduleType == null)
 {
 throw new ModuleInitializeException(string.Format(CultureInfo.CurrentCulture, Properties.Resources.FailedToGetType, typeName));
 }

 return (IModule)this.serviceLocator.GetInstance(moduleType);
}

Considerations for Using IServiceLocator

IServiceLocator is not meant to be the general-purpose container. Containers have different semantics of usage, which often drives the decision for why that container is chosen. Bearing this in mind, the Stock Trader RI uses the dependency injection container directly instead of using the IServiceLocator. This is the recommend approach for your application development.

In the following situations, it may be appropriate for you to use the IServiceLocator:

	You are an independent software vendor (ISV) designing a third-party service that needs to support multiple containers.

	You are designing a service to be used in an organization where they use multiple containers.

More Information

For information related to containers, see the following:

	Unity Application Block [http://www.msdn.com/unity] on MSDN.

	Unity community site [http://www.codeplex.com/unity] on CodePlex.

	Managed Extensibility Framework Overview [http://msdn.microsoft.com/en-us/library/dd460648.aspx] on MSDN.

	MEF community site [http://mef.codeplex.com/] on CodePlex.

	Inversion of Control containers and the Dependency Injection pattern [http://www.martinfowler.com/articles/injection.html] on Martin Fowler’s website.

	Design Patterns: Dependency Injection [http://msdn.microsoft.com/en-us/magazine/cc163739.aspx] in MSDN Magazine.

	Loosen Up: Tame Your Software Dependencies for More Flexible Apps [http://msdn.microsoft.com/en-us/magazine/cc337885.aspx] in MSDN Magazine.

	Castle Project [http://www.castleproject.org/container/index.html]

	StructureMap [http://structuremap.sourceforge.net/Default.htm]

	Spring.NET [http://www.springframework.net/]

 Deploying Applications Using the Prism Library for WPF

Deploying Applications Using the Prism Library for WPF

To successfully move a Prism application into production, you need to plan for deployment as part of the design process of your application. This topic covers the considerations and actions you need to perform to prepare your composite or modular application for deployment and the actions you need to take to get the application in the user’s hands.

Deploying WPF Prism Applications

A WPF Prism application can be composed of an executable and any number of additional DLLs. The main executable is the shell application project. Some of the additional DLLs will be the modules of the application. There may be some additional DLLs that are just shared assemblies used by the shell and modules of the application. In addition, you might have a set of resource or content files that get deployed along with the application.

To deploy a WPF Prism application, you have three choices:

	“XCopy deployment”

	ClickOnce deployment

	Windows Installer deployment

“XCopy deployment” is used as a general term for manual deployment through some sort of file copy operation, which may or may not include the use of the XCOPY command-line tool. If you choose to deploy the application in this way, it is up to you to manually package the files and move them to the target computer. The application should be ready to run as long as the expected folder structure and relative locations of the shell application executable, the module DLLs, and the content files are maintained.

Usually, a more automatic means of deployment is desired to ensure that things get placed in the right location and the user has easy access to run the application. To facilitate that, you can choose to use ClickOnce or Windows Installer (.msi files), depending on what additional installation requirements exist for the application.

The decision of whether to use ClickOnce or Windows Installer is often misunderstood. ClickOnce is not intended to be a one-size-fits-all deployment technology. It is intended for applications that need a low-impact install on a client computer. If your application needs to make computer-wide changes when it is installed—such as to install drivers, integrate with other applications, install services and other things that go outside the scope of just running your executable, ClickOnce is probably not an appropriate deployment choice. However, if you have a lightweight installation on the client computer and you want to benefit from network deployment and update of your WPF application, ClickOnce can be a great choice.

To create a Windows Installer deployment package (.msi file) for your application, you have a variety of choices, including Visual Studio Setup projects, Windows Installer XML (WiX) projects, or numerous third-party installer creation products.

Deploying WPF Prism Application with ClickOnce

ClickOnce is a Windows Presentation Foundation (WPF) or Windows Forms deployment mechanism that has been part of the .NET Framework since version 2.0. ClickOnce enables automatic deployment and update of WPF applications over the network from a deployment server. WPF Prism applications can use ClickOnce to get the shell, modules, and any other dependencies deployed to the client computer. The main challenge with Prism applications is that the Visual Studio publishing process for ClickOnce does not automatically include dynamically loaded modules in the published application.

Deploying a WPF application with ClickOnce is a two-step process. First, you have to publish the application from Visual Studio, and then you can deploy it to client computers. Publishing the application generates two manifests (a deployment manifest and an application manifest), and it copies the application files to a publish directory. That publish folder can then be moved to another server that may not be directly accessible from the developer computer to make the published application accessible to client computers from a known location and URL. Deploying an application to a client computer simply requires providing a URL or link that the user can navigate to. The URL points to the deployment manifest on the publishing deployment server. When that URL is loaded in the browser, ClickOnce on the client computer downloads the manifests and the application files specified by the manifests. After the files are downloaded and stored under the user profile, ClickOnce then launches the application. If subsequent updates are published to the deployment server, ClickOnce can automatically detect those updates, download, and apply them, or there are settings that allow you to detect and apply updates on demand or in the background after the application has launched.

When you publish a WPF Prism application that has dynamically loaded modules, the shell project will typically not have project references to the dynamically loaded modules. As a result, the published ClickOnce application manifest also does not include those module files, and if you deploy the application using ClickOnce, the client computer will not get the module files. To address this, you must modify the application manifest to include the module files that are not referenced by the shell application project.

ClickOnce Publishing Process

You can publish ClickOnce applications from Visual Studio 2013 using the Windows Software Development Kit (SDK) tool named the Manifest Generating and Editing tool (Mage) or a custom tool that uses the ClickOnce publishing APIs. Visual Studio exposes most of the capabilities needed for ClickOnce publishing. However, Visual Studio may not be available or desired for IT administrators who manage ClickOnce deployments on the server. Mage is designed to address most common administrative tasks for ClickOnce; it is a lightweight .NET Framework Windows-based application that can be given to your administrators. However, Mage requires too many detailed steps, performed in the correct order, to successfully complete common tasks such as modifying the application files listed in the application manifest. To make these tasks simpler, a custom utility is needed.

The Manifest Manager Utility sample utility demonstrates how to use the ClickOnce publishing API to manage deployment and application manifests in a simpler way. This utility is used for updating application manifest file lists and deployment manifest settings in a single user interface (UI) and its use is described in later sections in this topic for initial deployment and update of a Prism application. The Manifest Manager Utility uses APIs exposed in the Microsoft.Build.Tasks.Deployment namespace to load, manipulate, and save modified manifest files for a ClickOnce deployment. You can download the Manifest Manager Utility [http://compositewpf.codeplex.com/releases/view/14771] from the Prism community site on Codeplex. To learn the specific steps involved in publishing and updating a WPF Prism application that uses dynamic module loading, see the WPF Prism Deployment Hands-On Lab: Publishing and Updating with ClickOnce.

The following illustration shows the typical structure for a ClickOnce application publication, based on the way Visual Studio generates the deployment folders when you publish an application with ClickOnce. It includes a root folder for the application, which contains the default deployment manifest (.application file). The default deployment manifest usually points to the most recently published version when generated by Visual Studio, but it can be changed to point to whichever version the administrator chooses. The root folder also contains the Setup.exe bootstrapper, which allows you to deploy prerequisites for your application that might require an installer or executable to run before deploying the application using ClickOnce. There is then a subfolder for the application-specific files, under which you get a separate subfolder for each version that you publish. The publish version is a separate project setting and entry in the deployment manifest file for versioning the deployment as a whole, as opposed to the individual assembly versions of the contained assemblies. The publish version is used by ClickOnce to determine when there is an update available from a client that has already installed a ClickOnce application.

[image: ClickOnce publish folder structure]

ClickOnce publish folder structure

Under each publish version’s application files folder, you have another copy of the deployment manifest (.application file) that can be used to deploy specific versions to a client computer, or it can be copied to the root folder to cause a server-side rollback to a previous version. The application executable, in addition to any dependent libraries (such as Prism module assemblies) and resource files, will also be in this folder and will be automatically suffixed by a .deploy file name extension when published by Visual Studio. This is done to simplify the file extension mappings on the publishing web server so that you don’t have to allow downloads of .dll, .exe, and a myriad of other potential file types that the application is composed of.

The application manifest (.exe.manifest) file is also contained in this folder and is referenced by the deployment manifest. It contains the list of files the application is composed of with hash values per file to assist in change detection; it also contains a list of permissions required by the application to run because ClickOnce can launch applications in a partial trust AppDomain if desired.

If you manually generate or update a ClickOnce application publication using either Mage or a custom tool, you are not constrained to this folder and file structure. For any particular ClickOnce publication, the chain of dependencies includes the following:

	It includes a deployment manifest that points to the application manifest through an embedded code base URL.

	It includes an application manifest that contains relative paths to each of the application files. These files must reside in the same folder or a subfolder from where the application manifest resides.

It includes the application files themselves, usually with a .deploy file name extension appended to the file name to simplify mapping these files to MIME types on the deployment server. ClickOnce automatically strips off the .deploy file name extension on the client side after the file is downloaded.

ClickOnce Deployment and Update Process

The actual deployment of the application to a user via ClickOnce is almost always initiated by providing a URL or hyperlink to the deployment manifest of your published application on the deployment server. The user can click the hyperlink or enter the address in a browser, and the ClickOnce deployment process is invoked. After the manifest and application files are downloaded to the client computer, the application is launched. There are ClickOnce options that allow you to install the application during the initial deployment for offline use, or you can require the user to launch the application using the link or URL every time. When you publish a new version of the application to the deployment server, ClickOnce can automatically or manually check for updates and will download and apply the update for the next time the application launches.

More Information

You can download the Manifest Manager Utility [http://compositewpf.codeplex.com/releases/view/14771] from the Prism community site on Codeplex.

To learn the specific steps involved in publishing and updating a WPF Prism application that uses dynamic module loading, see the Publishing and Updating Applications Using the Prism Library Hands-on Lab.

 Modular Application Development Using Prism Library for WPF

Modular Application Development Using Prism Library for WPF

A modular application is an application that is divided into a set of loosely coupled functional units (named modules) that can be integrated into a larger application. A client module encapsulates a portion of the application’s overall functionality and typically represents a set of related concerns. It can include a collection of related components, such as application features, including user interface and business logic, or pieces of application infrastructure, such as application-level services for logging or authenticating users. Modules are independent of one another but can communicate with each other in a loosely coupled fashion. Using a modular application design makes it easier for you to develop, test, deploy, and maintain your application.

For example, consider a personal banking application. The user can access a variety of functions, such as transferring money between accounts, paying bills, and updating personal information from a single user interface (UI). However, behind the scenes, each of these functions is encapsulated within a discrete module. These modules communicate with each other and with back-end systems such as database servers and web services. Application services integrate the various components within each of the different modules and handle the communication with the user. The user sees an integrated view that looks like a single application.

The following illustration shows a design of a modular application with multiple modules.

[image: Module composition]

Benefits of Building Modular Applications

You are probably already building a well-architected application using assemblies, interfaces, and classes, and employing good object-oriented design principles. Even so, unless great care is taken, your application design may still be “monolithic” (where all the functionality is implemented in a tightly coupled way within the application), which can make the application difficult to develop, test, extend, and maintain.

The modular application approach, on the other hand, can help you to identify the large scale functional areas of your application and allow you to develop and test that functionality independently. This can make development and testing easier, but it can also make your application more flexible and easier to extend in the future. The benefit of the modular approach is that it can make your overall application architecture more flexible and maintainable because it allows you to break your application into manageable pieces. Each piece encapsulates specific functionality, and each piece is integrated through clear but loosely coupled communication channels.

Prism’s Support for Modular Application Development

Prism provides support for modular application development and for run-time module management within your application. Using Prism’s modular development functionality can save you time because you don’t have to implement and test your own modularity framework. Prism supports the following modular application development features:

	A module catalog for registering named modules and each module’s location; you can create the module catalog in the following ways:

	By defining modules in code or Extensible Application Markup Language (XAML)

	By discovering modules in a directory so you can load all your modules without explicitly defining in a centralized catalog

	By defining modules in a configuration file

	Declarative metadata attributes for modules to support initialization mode and dependencies

	Integration with dependency injection containers to support loose coupling between modules

	For module loading:
	Dependency management, including duplicate and cycle detection to ensure modules are loaded in the correct order and only loaded and initialized once

	On-demand and background downloading of modules to minimize application start-up time; the rest of the modules can be loaded and initialized in the background or when they are required

Core Concepts

This section introduces the core concepts related to modularity in Prism, including the IModule interface, the module loading process, the module catalog, communicating between modules, and dependency injection containers.

IModule: The Building Block of Modular Applications

A module is a logical collection of functionality and resources that is packaged in a way that can be separately developed, tested, deployed, and integrated into an application. A package can be one or more assemblies. Each module has a central class that is responsible for initializing the module and integrating its functionality into the application. That class implements the IModule interface.

Note: The presence of a class that implements the IModule interface is enough to identify the package as a module.

The IModule interface has a single method, named Initialize, within which you can implement whatever logic is required to initialize and integrate the module’s functionality into the application. Depending on the purpose of the module, it can register views into composite user interfaces, make additional services available to the application, or extend the application’s functionality. The following code shows the minimum implementation for a module.

public class MyModule : IModule
{
 public void Initialize()
 {
 // Do something here.
 }
}

Module Lifetime

The module loading process in Prism includes the following:

	Registering/discovering modules. The modules to be loaded at run-time for a particular application are defined in a Module catalog. The catalog contains information about the modules to be loaded, their location, and the order in which they are to be loaded.

	Loading modules. The assemblies that contain the modules are loaded into memory. This phase may require the module to be retrieved from some remote location or local directory.

	Initializing modules. The modules are then initialized. This means creating instances of the module class and calling the Initialize method on them via the IModule interface.

The following figure shows the module loading process.

[image: Module loading process]

Module Catalog

The ModuleCatalog holds information about the modules that can be used by the application. The catalog is essentially a collection of ModuleInfo classes. Each module is described in a ModuleInfo class that records the name, type, and location, among other attributes of the module. There are several typical approaches to filling the ModuleCatalog with ModuleInfo instances:

	Registering modules in code

	Registering modules in XAML

	Registering modules in a configuration file

	Discovering modules in a local directory on disk

The registration and discovery mechanism you should use depends on what your application needs. Using a configuration file or XAML file allows your application to not require references to the modules. Using a directory can allow an application to discover modules without having to specify them in a file.

Controlling When to Load a Module

Prism applications can initialize modules as soon as possible, known as “when available,” or when the application needs them, known as “on-demand.” Consider the following guidelines for loading modules:

	Modules required for the application to run must be loaded with the application and initialized when the application runs.

	Modules containing features that are almost always used in typical usage of the application can be loaded in the background and initialized when they become available.

	Modules containing features that are rarely used (or are support modules that other modules optionally depend upon) can be loaded and initialized on-demand.

Consider how you are partitioning your application, common usage scenarios, application start-up time, and the number and size of downloads to determine how to configure your module for downloading and initialization.

Integrate Modules with the Application

Prism provides the following classes to bootstrap your application: the UnityBootstrapper or the MefBootstrapper. These classes can be used to create and configure the module manager to discover and load modules. You can override a configuration method to register modules specified in a XAML file, a configuration file, or a directory location in a few lines of code.

Use the module Initialize method to integrate the module with the rest of the application. The way you do this varies, depending on the structure of your application and the content of the module. The following are common things to do to integrate your module into your application:

	Add the module’s views to the application’s navigation structure. This is common when building composite UI applications using view discovery or view injection.

	Subscribe to application level events or services.

	Register shared services with the application’s dependency injection container.

Communicate Between Modules

Even though modules should have low coupling between each other, it is common for modules to communicate with each other. There are several loosely coupled communication patterns, each with their own strengths. Typically, combinations of these patterns are used to create the resulting solution. The following are some of these patterns:

	Loosely coupled events. A module can broadcast that a certain event has occurred. Other modules can subscribe to those events so they will be notified when the event occurs. Loosely coupled events are a lightweight manner of setting up communication between two modules; therefore, they are easily implemented. However, a design that relies too heavily on events can become hard to maintain, especially if many events have to be orchestrated together to fulfill a single task. In that case, it might be better to consider a shared service.

	Shared services. A shared service is a class that can be accessed through a common interface. Typically, shared services are found in a shared assembly and provide system-wide services, such as authentication, logging, or configuration.

	Shared resources. If you do not want modules to directly communicate with each other, you can also have them communicate indirectly through a shared resource, such as a database or a set of web services.

Dependency Injection and Modular Applications

Containers like the Unity Application Block (Unity) and Managed Extensibility Framework (MEF) allow you to easily use Inversion of Control (IoC) and Dependency Injection, which are powerful design patterns that help to compose components in a loosely-coupled fashion. It allows components to obtain references to the other components that they depend on without having to hard code those references, thereby promoting better code re-use and improved flexibility. Dependency injection is very useful when building a loosely coupled, modular application. Prism is designed to be agnostic about the dependency injection container used to compose components within an application. The choice of container is up to you and will largely depend on your application requirements and preferences. However, there are two principal dependency injection frameworks from Microsoft to consider – Unity and MEF.

The patterns & practices Unity Application Block provides a fully-featured dependency injection container. It supports property-based and constructor-based injection and policy injection, which allows you to transparently inject behavior and policy between components; it also supports a host of other features that are typical of dependency injection containers.

MEF (which is part of .NET Framework 4.5) provides support for building extensible .NET applications by supporting dependency injection–based component composition and provides other features that support modular application development. It allows an application to discover components at run time and then to integrate those components into the application in a loosely-coupled way. MEF is a great extensibility and composition framework. It includes assembly and type discovery, type dependency resolution, dependency injection, and some nice assembly download capabilities. Prism supports taking advantage of MEF features, as well as the following:

	Module registration through XAML and code attributes

	Module registration through configuration files and directory scans

	State tracking as the module is loaded

	Custom declarative metadata for modules when using MEF

Both the Unity and MEF dependency injection containers work seamlessly with Prism.

Key Decisions

The first decision you will make is whether you want to develop a modular solution. There are numerous benefits of building modular applications as discussed in the previous section, but there is a commitment in terms of time and effort that you need to make to reap these benefits. If you decide to develop a modular solution, there are several more things to consider:

	Determine the framework you will use. You can create your own modularity framework, use Prism, MEF, or another framework.

	Determine how to organize your solution. Approach a modular architecture by defining the boundaries of each module, including what assemblies are part of each module. You can decide to use modularity to ease the development, as well as to have control over how the application will be deployed or if it will support a plug-in or extensible architecture.

	Determine how to partition your modules. Modules can be partitioned differently based on requirements, for example, by functional areas, provider modules, development teams and deployment requirements.

	Determine the core services that the application will provide to all modules. An example is that core services could be an error reporting service or an authentication and authorization service.

	If you are using Prism, determine what approach you are using to register modules in the module catalog. For WPF, you can register modules in code, XAML, in a configuration file, or discovering modules in a local directory on disk. Determine your module communication and dependency strategy. Modules will need to communicate with each other, and you will need to deal with dependencies between modules.

	Determine your dependency injection container. Typically, modular systems require dependency injection, inversion of control, or service locator to allow the loose coupling and dynamic loading and creating of modules. Prism allows a choice between using the Unity, MEF, or another container and provides libraries for Unity or MEF-based applications.

	Minimize application startup time. Think about on-demand and background downloading of modules to minimize application startup time.

	Determine deployment requirements. You will need to think about how you intend to deploy your application.

The next sections provide details about some of these decisions.

Partition Your Application into Modules

When you develop your application in a modularized fashion, you structure the application into separate client modules that can be individually developed, tested, and deployed. Each module will encapsulate a portion of your application’s overall functionality. One of the first design decisions you will have to make is to decide how to partition your application’s functionality into discrete modules.

A module should encapsulate a set of related concerns and have a distinct set of responsibilities. A module can represent a vertical slice of the application or a horizontal service layer. Large applications will likely have both types of modules.

[image: A vertical sliced application]

An application with modules organized around vertical slices

[image: A horizontal layered application]

An application with modules organized around horizontal layers

A larger application may have modules organized with vertical slices and horizontal layers. Some examples of modules include the following:

	A module that contains a specific application feature, such as the News module in the Stock Trader Reference Implementation (Stock Trader RI)

	A module that contains a specific sub-system or functionality for a set of related use cases, such as purchasing, invoicing, or general ledger

	A module that contains infrastructure services, such as logging, caching, and authorization services, or web services

	A module that contains services that invoke line-of-business (LOB) systems, such as Siebel CRM and SAP, in addition to other internal systems

A module should have a minimal set of dependencies on other modules. When a module has a dependency on another module, it should be loosely coupled by using interfaces defined in a shared library instead of concrete types, or by using the EventAggregator to communicate with other modules via EventAggregator event types.

The goal of modularity is to partition the application in such a way that it remains flexible, maintainable, and stable even as features and technologies are added and removed. The best way to accomplish this is to design your application so that modules are as independent as possible, have well defined interfaces, and are as isolated as possible.

Determine Ratio of Projects to Modules

There are several ways to create and package modules. The recommended and most common way is to create a single assembly per module. This helps keep logical modules separate and promotes proper encapsulation. It also makes it easier to talk about the assembly as the module boundary as well as the packaging of how you deploy the module. However, nothing prevents a single assembly from containing multiple modules, and in some cases this may be preferred to minimize the number of projects in your solution. For a large application, it is not uncommon to have 10–50 modules. Separating each module into its own project adds a lot of complexity to the solution and can slow down Visual Studio performance. Sometimes it makes sense to break a module or set of modules into their own solution to manage this if you choose to stick to one module per assembly/Visual Studio project.

Use Dependency Injection for Loose Coupling

A module may depend on components and services provided by the host application or by other modules. Prism supports the ability to register dependencies between modules so that they are loaded and initialized in the right order. Prism also supports the initialization of modules when they are loaded into the application. During module initialization, the module can retrieve references to the additional components and services it requires, and/or register any components and services that it contains in order to make them available to other modules.

A module should use an independent mechanism to get instances of external interfaces instead of directly instantiating a concrete type, for example by using a dependency injection container or factory service. Dependency injection containers such as Unity or MEF allow a type to automatically acquire instances of the interfaces and types it needs through dependency injection. Prism integrates with both Unity and MEF to allow a module to easily use dependency injection.

The following diagram shows the typical sequence of operations when modules are loaded that need to acquire or register references to the components and services.

[image: Example of dependency injection]

In this example, the OrdersModule assembly defines an OrdersRepository class (along with other views and classes that implement order functionality). The CustomerModule assembly defines a CustomersViewModel class which depends on the OrdersRepository, typically based on an interface exposed by the service. The application startup and bootstrapping process contains the following steps:

	The bootstrapper starts the module initialization process, and the module loader loads and initializes the OrdersModule.

	In the initialization of the OrdersModule, it registers the OrdersRepository with the container.

	The module loader then loads the CustomersModule. The order of module loading can be specified by the dependencies in the module metadata.

	The CustomersModule constructs an instance of the CustomerViewModel by resolving it through the container. The CustomerViewModel has a dependency on the OrdersRepository (typically based on its interface) and indicates it through constructor or property injection. The container injects that dependency in the construction of the view model based on the type registered by the OrdersModule. The net result is an interface reference from the CustomerViewModel to the OrderRepository without tight coupling between those classes.

Note: The interface used to expose the OrderRespository (IOrderRepository) could reside in a separate “shared services” assembly or an “orders services” assembly that only contains the service interfaces and types required to expose those services. This way, there is no hard dependency between the CustomersModule and the OrdersModule.

Note that both modules have an implicit dependency on the dependency injection container. This dependency is injected during module construction in the module loader.

Core Scenarios

This section describes the common scenarios you will encounter when working with modules in your application. These scenarios include defining a module, registering and discovering modules, loading modules, initializing modules, specifying module dependencies, loading modules on demand, downloading remote modules in the background, and detecting when a module has already been loaded. You can register and discover modules in code, in a XAML or application configuration file, or by scanning a local directory.

Defining a Module

A module is a logical collection of functionality and resources that is packaged in a way that can be separately developed, tested, deployed, and integrated into an application. Each module has a central class that is responsible for initializing the module and integrating its functionality into the application. That class implements the IModule interface, as shown here.

public class MyModule : IModule
{
 public void Initialize()
 {
 // Initialize module
 }
}

The way you implement the Initialize method will depend on the requirements of your application. The module class type, initialization mode, and any module dependencies are defined in the module catalog. For each module in the catalog, the module loader creates an instance of the module class, and then it calls the Initialize method. Modules are processed in the order specified in the module catalog. The runtime initialization order is based on when the modules are downloaded, available, and the dependencies are satisfied.

Depending on the type of module catalog that your application is using, module dependencies can be set either by declarative attributes on the module class itself or within the module catalog file. The following sections provide more details.

Registering and Discovering Modules

The modules that an application can load are defined in a module catalog. The Prism Module Loader uses the module catalog to determine which modules are available to be loaded into the application, when to load them, and in which order they are to be loaded.

The module catalog is represented by a class that implements the IModuleCatalog interface. The module catalog class is created by the application bootstrapper class during application initialization. Prism provides different implementations of module catalog for you to choose from. You can also populate a module catalog from another data source by calling the AddModule method or by deriving from ModuleCatalog to create a module catalog with customized behavior.

Note: Typically, modules in Prism use a dependency injection container and the Common Service Locator to retrieve instances of types that are required for module initialization. Both the Unity and the MEF containers are supported by Prism. Although the overall process of registering, discovering, downloading, and initializing modules is the same, the details can vary based on whether Unity or MEF is being used. The container-specific differences between approaches are explained throughout this topic.

Registering Modules in Code

The most basic module catalog is provided by the ModuleCatalog class. You can use this module catalog to programmatically register modules by specifying the module class type. You can also programmatically specify the module name and initialization mode. To register the module directly with the ModuleCatalog class, call the AddModule method in your application’s Bootstrapper class. An example is shown in the following code.

protected override void ConfigureModuleCatalog()
{
 Type moduleCType = typeof(ModuleC);
 ModuleCatalog.AddModule(
 new ModuleInfo()
 {
 ModuleName = moduleCType.Name,
 ModuleType = moduleCType.AssemblyQualifiedName,
 });
}

Note: If your application has a direct reference to the module type, you can add it by type as shown above; otherwise you need to provide the fully qualified type name and the location of the assembly.

To see another example of defining the module catalog in code, see StockTraderRIBootstrapper.cs in the Stock Trader Reference Implementation (Stock Trader RI).

Note: The Bootstrapper base class provides the CreateModuleCatalog method to assist in the creation of the ModuleCatalog. By default, this method creates a ModuleCatalog instance, but this method can be overridden in a derived class in order to create different types of module catalog.

Registering Modules Using a XAML File

You can define a module catalog declaratively by specifying it in a XAML file. The XAML file specifies what kind of module catalog class to create and which modules to add to it. Usually, the .xaml file is added as a resource to your shell project. The module catalog is created by the bootstrapper with a call to the CreateFromXaml method. From a technical perspective, this approach is very similar to defining the ModuleCatalog in code because the XAML file simply defines a hierarchy of objects to be instantiated.

The following code example shows a XAML file specifying a module catalog.

<--! ModulesCatalog.xaml -->
<Modularity:ModuleCatalog xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:sys="clr-namespace:System;assembly=mscorlib"
 xmlns:Modularity="clr-namespace:Microsoft.Practices.Prism.Modularity;assembly=Microsoft.Practices.Prism">

 <Modularity:ModuleInfoGroup Ref="file://DirectoryModules/ModularityWithMef.Desktop.ModuleB.dll" InitializationMode="WhenAvailable">
 <Modularity:ModuleInfo ModuleName="ModuleB" ModuleType="ModularityWithMef.Desktop.ModuleB, ModularityWithMef.Desktop.ModuleB, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 </Modularity:ModuleInfoGroup>

 <Modularity:ModuleInfoGroup InitializationMode="OnDemand">
 <Modularity:ModuleInfo Ref="file://ModularityWithMef.Desktop.ModuleE.dll" ModuleName="ModuleE" ModuleType="ModularityWithMef.Desktop.ModuleE, ModularityWithMef.Desktop.ModuleE, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 <Modularity:ModuleInfo Ref="file://ModularityWithMef.Desktop.ModuleF.dll" ModuleName="ModuleF" ModuleType="ModularityWithMef.Desktop.ModuleF, ModularityWithMef.Desktop.ModuleF, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">
 <Modularity:ModuleInfo.DependsOn>
 <sys:String>ModuleE</sys:String>
 </Modularity:ModuleInfo.DependsOn>
 </Modularity:ModuleInfo>
 </Modularity:ModuleInfoGroup>

 <!-- Module info without a group -->
 <Modularity:ModuleInfo Ref="file://DirectoryModules/ModularityWithMef.Desktop.ModuleD.dll" ModuleName="ModuleD" ModuleType="ModularityWithMef.Desktop.ModuleD, ModularityWithMef.Desktop.ModuleD, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
</Modularity:ModuleCatalog>

Note: ModuleInfoGroups provide a convenient way to group modules that are in the same assembly, are initialized in the same way, or only have dependencies on modules in the same group. Dependencies between modules can be defined within modules in the same ModuleInfoGroup; however, you cannot define dependencies between modules in different ModuleInfoGroups. Putting modules inside module groups is optional. The properties that are set for a group will be applied to all its contained modules. Note that modules can also be registered without being inside a group.

In your application’s Bootstrapper class, you need to specify that the XAML file is the source for your ModuleCatalog, as shown in the following code.

protected override IModuleCatalog CreateModuleCatalog()
{
 return ModuleCatalog.CreateFromXaml(new Uri("/MyProject;component/ModulesCatalog.xaml", UriKind.Relative));
}

Registering Modules Using a Configuration File

In WPF, it is possible to specify the module information in the App.config file. The advantage of this approach is that this file is not compiled into the application. This makes it very easy to add or remove modules at run time without recompiling the application.

The following code example shows a configuration file specifying a module catalog. If you want the module to automatically load, set startupLoaded=”true”.

<!-- ModularityWithUnity.Desktop\\app.config -->
<xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <section name="modules" type="Prism.Modularity.ModulesConfigurationSection, Prism.Wpf"/>
 </configSections>

 <modules>
 <module assemblyFile="ModularityWithUnity.Desktop.ModuleE.dll" moduleType="ModularityWithUnity.Desktop.ModuleE, ModularityWithUnity.Desktop.ModuleE, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" moduleName="ModuleE" startupLoaded="false" />
 <module assemblyFile="ModularityWithUnity.Desktop.ModuleF.dll" moduleType="ModularityWithUnity.Desktop.ModuleF, ModularityWithUnity.Desktop.ModuleF, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" moduleName="ModuleF" startupLoaded="false">
 <dependencies>
 <dependency moduleName="ModuleE"/>
 </dependencies>
 </module>
 </modules>
</configuration>

Note: Even if your assemblies are in the global assembly cache or in the same folder as the application, the assemblyFile attribute is required. The attribute is used to map the moduleType to the correct IModuleTypeLoader to use.

In your application’s Bootstrapper class, you need to specify that the configuration file is the source for your ModuleCatalog. To do this, you use the ConfigurationModuleCatalog class, as shown in the following code.

protected override IModuleCatalog CreateModuleCatalog()
{
 return new ConfigurationModuleCatalog();
}

Note: You can still add modules to a ConfigurationModuleCatalog in code. You can use this, for example, to make sure that the modules that your application absolutely needs to function are defined in the catalog.

Discovering Modules in a Directory

The Prism DirectoryModuleCatalog class allows you to specify a local directory as a module catalog in WPF. This module catalog will scan the specified folder and search for assemblies that define the modules for your application. To use this approach, you will need to use declarative attributes on your module classes to specify the module name and any dependencies that they have. The following code example shows a module catalog that is populated by discovering assemblies in a directory.

protected override IModuleCatalog CreateModuleCatalog()
{
 return new DirectoryModuleCatalog() {ModulePath = @".\\Modules"};
}

Loading Modules

After the ModuleCatalog is populated, the modules are ready to be loaded and initialized. Module loading means that the module assembly is transferred from disk into memory. The ModuleManager is responsible for coordinating the loading and initialization process.

Initializing Modules

After the modules load, they are initialized. This means an instance of the module class is created and its Initialize method is called. Initialization is the place to integrate the module with the application. Consider the following possibilities for module initialization:

	Register the module’s views with the application. If your module is participating in user interface (UI) composition using view discovery or view injection, your module will need to associate its views or view models with the appropriate region name. This allows views to show up dynamically on menus, toolbars, or other visual regions within the application.

	Subscribe to application level events or services. Often, applications expose application-specific services and/or events that your module is interested in. Use the Initialize method to add the module’s functionality to those application-level events and services.

For example, the application might raise an event when it is shutting down and your module wants to react to that event. It is also possible that your module must provide some data to an application level service. For example, if you have created a MenuService (it is responsible for adding and removing menu items), the module’s Initialize method is where you would add the correct menu items.

Note: Module instance lifetime is short-lived by default. After the Initialize method is called during the loading process, the reference to the module instance is released. If you do not establish a strong reference chain to the module instance, it will be garbage collected. This behavior may be problematic to debug if you subscribe to events that hold a weak reference to your module, because your module just “disappears” when the garbage collector runs.

	Register types with a dependency injection container. If you are using a dependency injection pattern such as Unity or MEF, the module may register types for the application or other modules to use. It may also ask the container to resolve an instance of a type it needs.

Specifying Module Dependencies

Modules may depend on other modules. If Module A depends on Module B, Module B must be initialized before Module A. The ModuleManager keeps track of these dependencies and initializes the modules accordingly. Depending on how you defined your module catalog, you can define your module dependencies in code, configuration, or XAML.

Specifying Dependencies in Code

For WPF applications that register modules in code or discover modules by directory, Prism provides declarative attributes to use when creating a module as shown in the following code example.

// (when using Unity)
[Module(ModuleName = "ModuleA")\]
[ModuleDependency("ModuleD")\]
public class ModuleA: IModule
{
 ...
}

Specify Dependencies in XAML

The following XAML shows where Module F depends on Module E.

 <-- ModulesCatalog.xaml -->
 <Modularity:ModuleInfo Ref="file://ModularityWithMef.Desktop.ModuleE.dll" moduleName="ModuleE" moduleType="ModularityWithMef.Desktop.ModuleE, ModularityWithMef.Desktop.ModuleE, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">

 <Modularity:ModuleInfo Ref="file://ModularityWithMef.Desktop.ModuleF.dll" moduleName="ModuleF" moduleType="ModularityWithMef.Desktop.ModuleF, ModularityWithMef.Desktop.ModuleF, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">
 <Modularity:ModuleInfo.DependsOn>
 <sys:String>ModuleE</sys:String>
 </Modularity:ModuleInfo.DependsOn>
</Modularity:ModuleInfo>
. . .

Specify Dependencies in Configuration

The following example App.config file shows where Module F depends on Module E.

<!-- App.config -->
<modules>
 <module assemblyFile="ModularityWithUnity.Desktop.ModuleE.dll" moduleType="ModularityWithUnity.Desktop.ModuleE, ModularityWithUnity.Desktop.ModuleE, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" moduleName="ModuleE" startupLoaded="false" />

 <module assemblyFile="ModularityWithUnity.Desktop.ModuleF.dll" moduleType="ModularityWithUnity.Desktop.ModuleF, ModularityWithUnity.Desktop.ModuleF, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" moduleName="ModuleF" startupLoaded="false">
 <dependencies>
 <dependency moduleName="ModuleE" />
 </dependencies>
 </module>
</modules>

Loading Modules on Demand

To load modules on demand, you need to specify that they should be loaded into the module catalog with the InitializationMode set to OnDemand. After you do that, you need to write the code in your application that requests the module be loaded.

Specifying On-Demand Loading in Code

A module is specified as on-demand using attributes, as shown in the following code example.

// Boostrapper.cs
protected override void ConfigureModuleCatalog()
{
 . . .
 Type moduleCType = typeof(ModuleC);
 this.ModuleCatalog.AddModule(new ModuleInfo()
 {
 ModuleName = moduleCType.Name,
 ModuleType = moduleCType.AssemblyQualifiedName,
 InitializationMode = InitializationMode.OnDemand
 });
 . . .
}

Specifying On-Demand Loading in XAML

You can specify the InitializationMode.OnDemand when you define your module catalog in XAML, as shown in the following code example.

<!-- ModulesCatalog.xaml -->
...
<module assemblyFile="ModularityWithUnity.Desktop.ModuleE.dll" moduleType="ModularityWithUnity.Desktop.ModuleE, ModularityWithUnity.Desktop.ModuleE, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" moduleName="ModuleE" startupLoaded="false" />
...

Specifying On-Demand Loading in Configuration

You can specify the InitializationMode.OnDemand when you define your module catalog in the App.config file, as shown in the following code example.

<!-- App.config -->
<module assemblyFile="ModularityWithUnity.Desktop.ModuleC.dll" moduleType="ModularityWithUnity.Desktop.ModuleC, ModularityWithUnity.Desktop.ModuleC, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" moduleName="ModuleC" startupLoaded="false" />

Requesting On-Demand Loading of a Module

After a module is specified as on demand, the application can then ask the module to be loaded. The code that wants to initiate the loading needs to obtain a reference to the IModuleManager service registered with the container by the bootstrapper.

private void OnLoadModuleCClick(object sender, RoutedEventArgs e)
{
 moduleManager.LoadModule("ModuleC");
}

Detecting When a Module Has Been Loaded

The ModuleManager service provides an event for applications to track when a module loads or fails to load. You can get a reference to this service through dependency injection of the IModuleManager interface.

this.moduleManager.LoadModuleCompleted += this.ModuleManager_LoadModuleCompleted;

void ModuleManager_LoadModuleCompleted(object sender, LoadModuleCompletedEventArgs e)
{
 ...
}

To keep the application and modules loosely coupled, the application should avoid using this event to integrate the module with the application. Instead, the module’s Initialize method should handle integrating with the application.

the LoadModuleCompletedEventArgs contains an IsErrorHandled property. If a module fails to load and the application wants to prevent the ModuleManager from logging the error and throwing an exception, it can set this property to true.

Note: After a module is loaded and initialized, the module assembly cannot be unloaded. The module instance reference will not be held by the Prism libraries, so the module class instance may be garbage collected after initialization is complete.

Modules in MEF

This section only highlights the differences if you choose to use MEF as your dependency injection container.

Note: When using MEF, the MefModuleManager is used by the MefBootstrapper. It extends the ModuleManager and implements the IPartImportsSatisfiedNotification interface to ensure that the ModuleCatalog is updated when new types are imported by MEF.

Registering Modules in Code Using MEF

When using MEF, you can apply the ModuleExport attribute to module classes to have MEF automatically discover the types. The following is an example.

[ModuleExport(typeof(ModuleB), InitializationMode = InitializationMode.OnDemand)]
public class ModuleB : IModule
{
 ...
}

You can also use MEF to discover and load modules using the AssemblyCatalog class, which can be used to discover all the exported module classes in an assembly, and the AggregateCatalog class, that allows multiple catalogs to be combined into one logical catalog. By default, the Prism MefBootstrapper class creates an AggregateCatalog instance. You can then override the ConfigureAggregateCatalog method to register assemblies, as shown in the following code example.

protected override void ConfigureAggregateCatalog()
{
 base.ConfigureAggregateCatalog();
 //Module A is referenced in in the project and directly in code.
 this.AggregateCatalog.Catalogs.Add(new AssemblyCatalog(typeof(ModuleA).Assembly));
 this.AggregateCatalog.Catalogs.Add(new AssemblyCatalog(typeof(ModuleC).Assembly));
 . . .
}

The Prism MefModuleManager implementation keeps the MEF AggregateCatalog and the Prism ModuleCatalog synchronized, thereby allowing Prism to discover modules added via the ModuleCatalog or the AggregateCatalog.

Note: MEF uses Lazy<

T>

 extensively to prevent instantiation of exported and imported types until the Value property is used.

Discovering Modules in a Directory Using MEF

MEF provides a DirectoryCatalog that can be used to inspect a directory for assemblies containing modules (and other MEF exported types). In this case, you override the ConfigureAggregateCatalog method to register the directory. This approach is only available in WPF.

To use this approach, you first need to apply the module names and dependencies to your modules using the ModuleExport attribute, as shown in the following code example. This allows MEF to import the modules and allows Prism to keep the ModuleCatalog updated.

protected override void ConfigureAggregateCatalog()
{
 base.ConfigureAggregateCatalog();
 . . .
 DirectoryCatalog catalog = new DirectoryCatalog("DirectoryModules");
 this.AggregateCatalog.Catalogs.Add(catalog);
}

Specifying Dependencies in Code Using MEF

For WPF applications using MEF, use the ModuleExport attribute, as shown here.

// (when using MEF)
[ModuleExport(typeof(ModuleA), DependsOnModuleNames = new string[] { "ModuleD" })]
public class ModuleA : IModule
{
 ...
}

Because MEF allows you to discover modules at run time, you may also discover new dependencies between modules at run time. Although you can use MEF alongside the ModuleCatalog, it is important to remember that the ModuleCatalog validates the dependency chain when it is loaded from XAML or configuration (before any modules are loaded). If a module is listed in the ModuleCatalog and then loaded using MEF, the ModuleCatalog dependencies will be used, and the DependsOnModuleNames attribute will be ignored.

Specifying On-Demand Loading Using MEF

If you are using MEF and the ModuleExport attribute for specifying modules and module dependencies, you can use the InitializationMode property to specify that a module should be loaded on demand, as shown here.

[ModuleExport(typeof(ModuleC), InitializationMode = InitializationMode.OnDemand)]
public class ModuleC : IModule
{
}

More Information

For more information about assembly caching, see “How to: Use Assembly Library Caching [http://msdn.microsoft.com/en-us/library/dd833069(VS.95).aspx]” on MSDN.

To learn more about modularity in Prism, see the Modularity with MEF for WPF QuickStart or the Modularity with Unity for WPF QuickStart. For more information about the QuickStarts, see .

For information about the modularity features that can be extended in the Prism Library, see Modules in Extending Prism.

 Publishing and Updating Applications Using the Prism Library for WPF Hands-on Lab

Publishing and Updating Applications Using the Prism Library for WPF Hands-on Lab

In this lab, you will learn how to publish, deploy, and update a composite Prism Windows Presentation Foundation (WPF) application that uses dynamic module loading with ClickOnce. After completing this lab, you will be able to do the following:

	Publish an existing WPF Prism shell application project with ClickOnce.

	Add dynamically loaded modules to the published application for deployment.

	Deploy the application to a client computer.

	Publish an update to the application.

	Deploy the update to a client computer.

System Requirements

This guidance was designed to run on the Microsoft Windows 8, Windows 7, Windows Vista, Windows Server 2012, or Windows Server 2008 operating system. WPF applications built using this guidance require the .NET Framework 4.5.
Before you can use the Prism Library, the following must be installed:

	Microsoft Visual Studio 2013 Professional, Premium, or Ultimate editions

	Microsoft .NET Framework 4.5 (installed with Visual Studio 2013)

	Optional tool:
	Microsoft Blend for Visual Studio 2013 [https://www.microsoft.com/expression/products/Blend_Overview.aspx]

Preparation

This topic requires you to have Prism and the Prism QuickStarts in the default installed directory structure. This lab uses the ModularityWithUnity.Desktop QuickStart that is included with the Prism installed source code.

Note: This hands-on lab uses the QuickStart that uses a Unity container, but you can also use the Managed Extensibility Framework (MEF) variant of the QuickStart.

To compile the solution

	Open the solution file \Quickstarts\Modularity\Desktop\ModularityWithUnity\ModularityWithUnity.Desktop.sln.

	Build the solution.

Additionally, this lab uses the Manifest Manager Utility, which is available on the Prism CodePlex site at http://compositewpf.codeplex.com/releases/view/14771 in the Download section. You will need to download and extract the source code for that utility, and build it to use it later in the lab. You can either run it from a separate instance of Visual Studio or you can build once and just run the binaries for the second task in this lab.

Note: This hands-on lab assumes that you understand Prism modularity and deployment concepts. For more information, see Modular Application Development and [Deploying Applications]10-Deploying.md).

Procedures

This lab includes the following tasks:

	Task 1: Publishing an initial version of the shell application

	Task 2: Updating the manifests to include dynamically loaded module assemblies

	Task 3: Deploying the initial version to a client machine

	Task 4: Publishing an updated version of the application and updating the manifests

	Task 5: Deploying the updated version to a client computer

The next sections describe each of these tasks.

Note: The instructions for this hands-on lab are based on the ModularityWithUnity.Desktop solution.

Task 1: Publishing an Initial Version of the Shell Application

In this task, you will publish the initial version of the shell application project using Visual Studio. The following steps will be performed:

	Set the ClickOnce publish settings. In this task, you review and configure the project settings for the shell project that determine the ClickOnce deployment behavior.

	Add a publisher certificate. In this task, you create a test publisher certificate to enable ClickOnce publishing and associate it with the application.

	Publish the application. In this task, you physically publish the shell application from Visual Studio to a target deployment directory.

	Verify the published output. In this task, you verify the output of the publication in the target directory.

The following procedure describes how to configure the ClickOnce publish settings within the shell project. These settings alter the behavior of ClickOnce, both at initial installation time and when setting the update policies for the application. The publish settings are only relevant for the shell project itself because it is the launch application executable, which determines the deployment behavior of the application as a whole in a ClickOnce deployed application.

To set the ClickOnce publish settings

	In Visual Studio, open the project properties for the ModularityWithUnity.Desktop WPF project. To do this, right-click the project in Solution Explorer, and then click Properties. In the project settings, click the Publish tab. The ClickOnce publishing settings will be shown, as in the following illustration.

[image: ClickOnce publish settings]

	Change the publishing folder location to http://localhost/PrismDeploymentHOL if you have IIS on your local computer. If you do not, you can publish to another IIS computer for which you have administrator permissions to create a new virtual directory, or you can use a fully qualified Universal Naming Convention (UNC) file path (such as \\mymachinename\c$\PrismDeploymentHOL) if you first create that directory. The address used is the one that will be used to install the application later in the lab, so make sure you note the address. This address is the physical address you use to push the ClickOnce manifests and application files to the deployment server when you publish.

	The installation folder URL can be used if the externally exposed address used for installation of the application will be different from the one used for publishing (for example, if you are publishing via FTP to one of your servers, but users will install the application based on an externally visible HTTP path to that server). This path represents the installation address on the deployment server to the users. If the path is not supplied, it is assumed you can launch the application using the same address you used to publish.

	The install mode and settings provide you fine-grained options for configuring the way the application installs, what files it is composed of, if there are prerequisite installations that need to happen first (such as installing the .NET Framework 4.5), how updates are performed, and a number of other options. For this lab, you will use the default settings, which configures the application to install for offline use (meaning it can at least be launched even if you are not connected to the deployment server, but it depends on what your application does after launch as to whether it will function properly). The default settings also set the application to automatically update before launch if a new version is detected on the deployment server.

	Click the Updates button, and then select check box labeled The application should check for updates, as shown in the following illustration.

[image: Application Updates dialog box]

	Click the Options button. In the Options dialog box, click Manifests in the left pane, and then select the check box labeled Create desktop shortcut.

[image: Publish Options dialog box]

	The publish version drives detection of updates for installed ClickOnce applications. Generally, you want to be in explicit control over this version in a real deployment. For this lab, you will allow Visual Studio to automatically increment this version number each time you publish.

The following procedure explains how to set up the certificate used for signing the published application. To ensure that your application cannot be replaced on the deployment server with a tampered version, ClickOnce requires you to digitally sign the ClickOnce manifests using an X509 code signing certificate. For development purposes, Visual Studio can generate a test certificate for your use. For putting your application into production, it is not recommended to use a test certificate. You should either obtain a certificate from a well-known (Trusted Root) certificate authority for public deployments or obtain one from your domain administrators for an internal deployment. In this lab, you will simply use the Visual Studio–generated test certificate.

To add a publisher certificate

	In the shell project properties, click the Signing tab.

	Select the check box labeled Sign the ClickOnce manifests. The certificate information will initially be blank if you have not previously created or associated a certificate with the project.

[image: ClickOnce Publish project property settings]

	Click the Create Test Certificate button. This opens the Create Test Certificate dialog box, as shown in the following illustration.

[image: Create Test Certificate password dialog box]

	Click OK to leave the test certificate without a password.

	The certificate information should now be populated, and the certificate name and issuer will be based on your logged-on Windows account information. If you have an existing certificate as a file or already installed in your certificate stores, you can select the certificate using one of the buttons next to the certificate information instead.

To publish the shell application

	Build the application and make sure it builds as expected. Publishing the application will cause the application to build, but it is easier to resolve any build errors with a normal build before publishing.

	In Visual Studio, click Publish ModularityWithUnity.Desktop on the Build menu.

	The Publish Wizard dialog box displays the publish folder location address that you entered in step 2, as shown in the following illustration. Click Finish to publish the application.

[image: Publish Wizard dialog box]

Note: Depending on the computer you publish to and the security settings, you may get a warning that Visual Studio is unable to view the published application. This simply means it was unable to launch a browser and navigate to the publish location URL. However, the application is not really ready to install yet at this point because you need to add the dynamic modules to the manifests in the next task.

Task 2: Updating the Manifests to Include Dynamically Loaded Module Assemblies

In this task, you will edit the ClickOnce manifests of your deployed application to add the dynamic module assemblies. This involves editing the application files list in the application manifest, saving and re-signing the application manifest, updating the application manifest reference within the deployment manifest, and saving and re-signing the deployment manifest. These steps can all be performed individually using the .NET Framework SDK tool named the Manifest Generating and Editing tool (Mage). However, the Manifest Manager Utility that you can download from the Prism CodePlex site automates these steps into a single easy editor. To accomplish them, you will do the following:

	Open the deployment manifest in the Manifest Manager Utility. In this task, you run the utility to simplify editing of the manifests.

Important: You must run this utility as an administrator.

	Add the dynamically loaded modules to the manifests. In this task, you locate and add the dynamic module assemblies to the manifest and get them deployed to the publish location.

	Save and sign the manifests. In this task, you select the publisher certificate used for signing the ClickOnce manifests to save and re-sign the manifests.

The following procedure describes how to add the dynamic module assemblies to the ClickOnce manifests.

To open the deployment manifest in the Manifest Manager Utility

	If you have not already done so, download the most recent Manifest Manager Utility from the Download section of the Prism CodePlex site at http://compositewpf.codeplex.com/releases/view/14771 and unzip it to a working directory on your computer.

	In Visual Studio 2013, open the file ManifestManagerUtility.sln, build it, and run it.

Important: You must run this utility as an administrator. If you are running this from Visual Studio, you must start Visual Studio as an administrator.

	On the File menu, click Open, and then navigate to the publish folder location where you published the QuickStart in the previous task. In that folder, select the deployment manifest file ModularityWithUnity.Desktop.application, and then click Open.

[image: Open dialog box from Manifest Manager Utility in publish folder location]

	The deployment and linked application manifest files will be opened by the utility and will be presented in the unified view of the utility, as shown in the following illustration. You can see that the shell executable file and all referenced assemblies that are not part of the framework are automatically included. Note that Modules A and C are included because they were referenced for static loading by the QuickStart, but you will need to add the additional modules using the utility.

[image: Manifest Manager utility]

To add the dynamically loaded modules to the manifest

	On the Edit menu, click Add Files. In the Add Application Files dialog box, navigate to the build output folder for Module B (such as C:\temp\ModularityWithUnity\ModuleB\bin\Debug\) and select the module DLL (such as ModularityWithUnity.Desktop.ModuleB.dll). In the Add Application Files dialog box, click Open to add the module DLL to the manifest.

	When you click Open, a Browse For Folder dialog box appears. In this dialog box, you can specify the destination folder to copy the module file to the publish folder. Modules B and D are loaded in the QuickStart through directory scan, and the bootstrapper sets the folder it scans to a relative path of .\DirectoryModules from the executable file. This means the files need to be in that same relative path in the published application.

	Select the version-specific Application Files folder, and then click the Make New Folder button at the bottom of the dialog box.

	Name the new folder DirectoryModules.

	Make sure the new folder is selected, and then click OK. This copies the Module B DLL into the DirectoryModules subfolder of the application files, as shown in the following illustration.

[image: Browse For Folder dialog box with DirectoryModules subfolder selected]

	Repeat the preceding steps to add Module D to the manifest and place it in the DirectoryModules subfolder.

	Repeat the preceding steps to add Modules E and F to the manifest, but those both go in the root Application Files folder (ModularityWithUnity.Desktop_1_0_0_0).

	At this point, the additional modules should be listed in Manifest Manager Utility with the relative path shown for Modules B and D, as shown in the following illustration (order does not matter).

[image: Manifest Manager utility with Modules B, D, E, and F added]

To sign and save the manifests

	Click the Save button on the toolbar of the utility. This opens the Select Publisher Certificate to Sign Manifest dialog box.

[image: Select Publisher Certificate to Sign Manifest dialog box]

	Click the Browse button, and then locate and select the ModularityWithUnity.Desktop_TemporaryKey.pfx file that was generated when you added the test certificate to the project in the first task of this lab.

	Click the Save and Sign button, leaving the password blank again.

At this point, you have successfully published the application with modified manifest files and it is ready to install.

Task 3: Deploying the Initial Version to a Client Computer

In this task, you will launch and install the application.

To launch and install the application

	Open an Internet Explorer browser window and enter the address you used as the publish folder location with the deployment manifest (.application file) path added to the end of it (such as http://localhost/PrismDeploymentHOL/ModularityWithUnity.Desktop.application).

	A Launching Application dialog box briefly appears as ClickOnce downloads the manifests for the application, as shown in the following illustration.

[image: ClickOnce Launching Application dialog box]

	A security warning appears, as shown in the following illustration. It notifies the user of who the publisher of this application is. Because you are using a test certificate, it will show an unknown publisher. To get a more friendly security warning, you will need a certificate issued from a trusted root certification authority.

[image: ClickOnce security warning]

	Click Install. While the rest of the application files are downloaded and launched, you will briefly see a dialog box with a progress bar, as shown in the following illustration.

[image: Install progress bar]

	The QuickStart should launch and you should see Modules A and D load when it starts. You can click on the other squares to get the other modules to load on demand.

[image: Modularity with Unity QuickStart running]

Task 4: Publishing an Updated Version of the Application and Updating the Manifests

In this task, you will make a simple visible change to the application and publish the new version. To accomplish this, you will do the following:

	Modify the title of the application. In this task, you will modify the large text at the top of the application to indicate a modified version. This gives a simple visible change to the application so you can verify the updated application launches in the next task.

	Publish the new version of the application. In this task, you publish the application again with a new publish version so that the ClickOnce update checking will see that there is a new version of the application on the deployment server.

	Update the manifests. In this task, you will use the manifest manager utility again to re-add Modules B, D, E, and F to the deployment because each time you re-publish, the manifest is re-generated by Visual Studio based on the referenced assemblies from the shell.

The following procedure describes how to publish the updated version.

To modify the title of the application

	With the ModularityWithUnity.Desktop project open, open the Shell.xaml file in the designer.

	Modify the Title property of the window to read Modularity with Unity QuickStart – Desktop – Modified.

	Save and build the solution.

To publish the new version of the application

	On the Build menu, click Publish ModularityWithUnity.Desktop.

	In the Publish Wizard, click Finish.

	The new version will be published and the publish version number will be 1.0.0.1 because Visual Studio auto-incremented the publish version when you first published in Task 1.

To update the manifests for the new version

	Open Manifest Manager Utility again.

	On the File menu, click Open, and then locate and open the ModularityWithUnity.Desktop.application deployment manifest again (Manifest Manager Utility should remember the location from the last time you opened a manifest). You should see that the manifest version is now 1.0.0.1 and Modules B, D, E, and F are missing again.

	On the Edit menu, click Add Files to select the Modules B assembly.

	When the Browse For Folder dialog box appears, go to the new published version’s Application Files folder (ModularityWithUnity.Desktop_1_0_0_1), create a DirectoryModules subfolder, and then select it to place Module B in that relative path.

	Repeat steps 3 and 4 for Module D, also putting it into the DirectoryModules subfolder.

	Repeat steps 3 and 4 for Modules E and F, but place them in the ModularityWithUnity.Desktop_1_0_0_1 directory, not the DirectoryModules subfolder.

	On the toolbar, click the Save button.

	Manifest Manager Utility should remember the path to the publisher certificate file you used to publish the first version, so you can just click the Save and Sign button.

The new version is published and ready to deploy.

Task 5: Deploying the Updated Version to a Client Computer

In this task, you will launch the application as the client computer and see that it automatically updates.

To deploy the updated version to a client computer

	Locate the shortcut on your desktop that was created when you installed the initial version of the application (ModularityWithUnity.Desktop), and then click it to launch the application from the client computer.

	The Update Available dialog box appears, as shown in the following illustration. Click OK to accept the update.

[image: Update Available dialog box]

You should see the modified title on the application after it has launched.

 Extending the Prism Library 5.0 for WPF

Extending the Prism Library 5.0 for WPF

Prism contains assets that represent recommended practices for Windows Presentation Foundation (WPF) client development. Developers can use an unmodified version of the guidance to create composite applications using the Model-View-ViewModel (MVVM) pattern. However, because each application is unique, you should analyze whether Prism is suitable for your particular needs. In some cases, you will want to customize the guidance to incorporate your enterprise’s best practices and frequently repeated developer tasks.

The Prism Library can serve as the foundation for your WPF client applications. The Prism Library was designed so that significant pieces can be customized or replaced to fit your specific scenario. You can modify the source code for the existing library to incorporate new functionality. Developers can replace key components in the architecture with ones of their own design because of the reliance on a container to locate and construct key components in the architecture. In the library, you can even replace the container itself if you want. Other common areas to customize include creating or customizing the bootstrapper to select a module discovery strategy for module loading, calling your own logger, using your own container, and creating your own region adapters.

This topic describes several key extensibility points in the Prism Library. These tend to be more advanced topics and are not expected to be performed for most developers using the Prism Library. A solid understanding of the goals and design decisions in the Prism Library will help to ensure any extensions to Prism functionality don’t create side effects or degrade the architecture. It is recommended that the main topics of the Prism documentation are read before extending the Prism Library. Most of the techniques described in this document rely on replacing or modifying Prism Library default configuration during the bootstrapping sequence when the application starts, so reading the section in is a prerequisite.

The following are the key extensibility points in the Prism Library covered in this topic:

	Application Bootstrapper. This demonstrates the key extensibility point of the Prism Library.

	Modularity. This demonstrates extensibility points when building a modular application.

	Region Management. This demonstrates extending how regions behave, how they are hosted, and how they interact with their views.

	Region Navigation. This demonstrates how to change your logical navigation structure.

	View Model Locator. This demonstrates how to modify the conventions when using the View Model Locator.

Guidelines for Extensibility

Use these guidelines when you extend the Prism Library. You can extend the library by adding or replacing services, modifying the source code, or adding new application capabilities.

Exposing Functionality

A library should provide a public API to expose its functionality. The interface of the API should be independent of the internal implementation. Developers should not be required to understand the library design or implementation to effectively use its default functionality. Whenever possible, the API should apply to common scenarios for a specific functionality.

Extending Libraries

The Prism Library provides extensibility points that developers can use to tailor the library to suit their needs. For example, when using the Prism Library, you can replace the provided logging service with your own logging service.

You can extend the library without modifying its source code. To accomplish this, you should use extensibility points, such as public base classes or interfaces. Developers can extend the base classes or implement the interfaces and then add their extensions to the library. When defining the set of extensibility points, consider the effect on usability. A large number of extensibility points can make the library complicated to use and difficult to configure.

Some developers may be interested in customizing the code, which means they will modify the source code instead of using the extension points. To support this effort, the library design should provide the following:

	It should follow object-oriented design principles whenever practical.

	It should use appropriate patterns.

	It should efficiently use resources.

	It should adhere to security principles (for example, distrust of user input and principle of least privilege).

Recommendations for Modifying the Prism Library

When modifying the source code, follow these best practices:

	Make sure you understand how the library works by reading the topics that describe its design. Consider changing the library’s namespace if you significantly alter the code or if you want to use your customized version of the library together with the original version.

	Consider authoring your own assemblies that use the Prism Library’s built in extensibility points first before altering or replacing the Prism Library binaries.

	Use strong naming. A strong name allows the assembly to be uniquely identified, versioned, and checked for integrity. You will need to generate your own key pair to sign your modified version of the application block. For more information, see Strong-Named Assemblies [http://msdn2.microsoft.com/en-us/library/wd40t7ad(vs.71).aspx] on MSDN. Alternatively, you can choose to not sign your custom version. This is referred to as weak naming.

Extensibility Points in the Prism Library

This section outlines the extension points, by functional area, and associated information for extending the library.

Container and Bootstrapper

The Prism Library directly supports both the Unity Application Block (Unity) and Managed Extensibility Framework (MEF) as dependency injection containers; however, because the container is accessed through the IServiceLocator interface, the container can be replaced.

Each Prism application configures the Prism Library through a bootstrapper class. Each stage in the bootstrapping process is replaceable, as well as the sequence itself. The bootstrapper provides a key extensibility point to replace default implementations with custom implementations or register additional types and services.

Logging

Some Prism Library components log information, warning messages, or error messages. To avoid a dependency on a particular logging approach, it logs these messages to the ILoggerFacade interface. A common extension is to provide a custom logger for specific applications.

Modules

The Prism Library provides various ways to populate the module catalog and load modules; however, your scenario may have needs that the library does not provide.

Module loading includes the following three phases, which can be customized:

	Module discovery. This is the process of populating a module catalog. Frequently, this is done directly or by sweeping a directory, but your application may need to do this some other way, such as from a database. In these cases, you can create a custom catalog that populates itself from an appropriate source.

	Module retrieval and loading. This is the process of acquiring the module binaries locally and loading the module into the current application domain. The library provides the FileModuleTypeLoader, but you may want to implement your own retrieval strategy.

	Module initialization. This is the process of initializing a module. In the library, this is done by the ModuleInitializer, but it can be replaced by providing a new object that implements IModuleInitialzer.

Regions

The Prism Library provides default control adapters for enabling a control as a region. Extensions around regions may involve providing custom region adapters, custom regions, or replacing the region manager. If you have a custom WPF control or a third-party control that does not work with the provided region adapters, you may want to create custom region adapters that will. It is also possible to replace the default RegionManager by supplying a new IRegionManager in the container.

Region Navigation

The region feature of the Prism Library also supports navigation, including back/forward journaling support. Views within a region can extend and participate in navigation through the INavigationAware interface. Developers familiar with Silverlight navigation features will find Region analogous to the Frame class. Region navigation supports several extensibility points that make it possible to change the logical navigation structure of the application in addition to replacement of navigation services.

The RegionNavigationContentLoader class provides the ability to load content into a region based on the NavigationContext. If the content being navigated to is already in the region, the RegionNavigationContentLoader will locate that content and make it active instead of creating new content to add to the region. The RegionNavigationContentLoader.GetCandidatesFromRegion method searches the region’s views matching them by type. However, it is possible to have a view whose type does not match the type used to resolve it. For example, you could register your view with a dependency injection container using a “friendly” name that does not match the name of your view type.

[Export("FriendlyName")]
public class MyViewType { ... }

The Prism Library ships with UnityRegionNavigationContentLoader and MefRegionNavigationContentLoader that override the base GetCandidatesFromRegion method providing special handling necessary to find view types based on possible friendly name registration. If you are not using either UnityRegionNavigationContentLoader or MefRegionNavigationContentLoader, then make sure to add handling to a subclass of RegionNavigationContentLoader specific to the dependency injection container you are using.

Container and Bootstrapper

The Prism Library contains the Bootstrapper base class. The Unity and MEF components derive from this class as UnityBootstrapper and MefBootstrapper, respectively. The Bootstrapper base class defines an abstract Run method that leaves the exact sequencing of the process up to the derived classes. Almost every method is marked as virtual, allowing you to override individual methods to customize and extend the bootstrapping process.

For most type instantiation, a bootstrapper will use the dependency injection container. However, there are some parts of the bootstrapping process that cannot use the container:

	Creating the logger. Generally, the logger is created first (before the container) because the bootstrapper needs to log information about creating the container. For more information about changing the logging implementation, see the section, “Logging.”

	Creating and configuring catalogs. Catalogs (for example, ModuleCatalog and AggregateCatalog) are created before the container because they are used during construction of the container.

	Creating the shell. Because the shell may already exist before the bootstrapping sequence runs, the CreateShell method is left as abstract for the application developer to implement. The application developer can use the container to instantiate or locate the shell because the container has been created and initialized.

Replacing Default Prism Library Types

There may be times when you need to change or extend the underlying implementation of a Prism Library type for an application. Because the Prism Library relies on dependency injection, you can replace the type during the bootstrapping sequence and both your application and the Prism Library will use the new type.

Replacing Default Types Using Unity

Any replacement types registered in the container before the UnityBootstrapper.ConfigureContainer method is called will replace the type. The ConfigureContainer default implementation uses the RegisterTypeIfMissing method to only add a Prism Library type if that associated interface is not already registered.

To replace Prism Library types in Unity, first derive your new type from the interface or class you want to replace. The following code example shows a replacement for the IEventAggregator interface.

// when using Unity
public class ReplacementEventAggregator : IEventAggregator
{
 // ...
}

Now that you have the replacement type, override the ConfigureContainer method in the bootstrapper and register interface and type before calling the base class. The following code example shows how to register the replacement for the IEventAggregator.

// when using Unity
protected override void ConfigureContainer()
{
 this.RegisterTypeIfMissing(typeof(IEventAggregator), typeof(ReplacementEventAggregator), true);
 base.ConfigureContainer();
}

Replacing Default Types Using MEF

Any replacement types registered in the container before the MefBootstrapper.ConfigureContainer method is called will replace the type. The ConfigureContainer default implementation only adds a Prism Library type if that associated interface is not already registered.

To replace Prism Library types in MEF, first derive your new type from the interface you want to replace and apply the appropriate MEF Export attributes to it. The following code example shows a replacement for the IEventAggregator interface.

// when using MEF
[Export(typeof(IEventAggregator))]
[PartCreationPolicy(CreationPolicy.Shared)]
public class ReplacementEventAggregator : IEventAggregator
{
 // ...
}

Now that you have the replacement type, override the ConfigureAggregateCatalog method in the bootstrapper and add a catalog that contains the type to the AggregateCatalog. The following code example shows how to use a TypeCatalog to add the replacement type. An AssemblyCatalog could also have been used.

// when using MEF
protected override void ConfigureAggregateCatalog()
{
 this.AggregateCatalog.Catalogs.Add(new TypeCatalog(typeof(ReplacementEventAggregator)));
 base.ConfigureAggregateCatalog();
}

Registering Non-MEF Attributed Types with the MEF Container

Registering types with MEF is simple if you own the code and can take a direct dependency on MEF, because all you need to do is add an Export attribute to the types. However, in some situations, you may need to register types with MEF when you cannot take a direct dependency on the MEF assemblies. This problem was encountered while the developers added MEF support to Prism because one of the design goals was to ensure that the core Prism libraries were not container-specific. This meant that the Microsoft.Practices.Prism assembly could not reference System.ComponentModel.Composition and use the Export attribute. Instead, the team created derived classes in the Microsoft.Practices.Prism.MefExtensions assembly that derived from the types the team wanted to expose and exported the appropriate type. The following code example from the MefRegionManager class shows an example of this approach by deriving from RegionManager and exporting the new type as an IRegionManager.

[Export(typeof(IRegionManager))]
public class MefRegionManager : RegionManager
{
}

Creating a Minimal Bootstrapper

Some applications do not use many of the features in the Prism Library. In some cases, application developers may want the absolute minimum level of services—only dependency injection and service location. To do this, override the ConfigureContainer method in the bootstrapper and implement the following.

// when using UnityBootstrapper
protected override void ConfigureContainer()
{
 // Base class implementation deliberately not called
 // base.ConfigureContainer();
 this.Container.AddNewExtension<UnityBootstrapperExtension>();
 Container.RegisterInstance<ILoggerFacade>(Logger);
 this.Container.RegisterInstance(this.ModuleCatalog);
 RegisterTypeIfMissing(typeof(IServiceLocator), typeof(UnityServiceLocatorAdapter), true);
}

protected override RegionAdapterMappings ConfigureRegionAdapterMappings()
{
 return null;
}

protected override IRegionBehaviorFactory ConfigureDefaultRegionBehaviors()
{
 return null;
}

Note: The overrides of the region adapters and mappings are required because Unity cannot determine the appropriate concrete type to return when an implementation of an interface is requested. These calls associate the concrete type to return for each interface. When concrete types are requested Unity is able to directly resolve them by instantiating that type.

// when using MEFBootstrapper
protected override void ConfigureContainer()
{
 // Base class implementation deliberately not called
 // base.ConfigureContainer();

 this.Container.ComposeExportedValue<ILoggerFacade>(this.Logger);
 this.Container.ComposeExportedValue<IServiceLocator>(new MefServiceLocatorAdapter(this.Container));
 this.Container.ComposeExportedValue<AggregateCatalog>(this.AggregateCatalog);
}

Changing Dependency Injection Containers

If you want to use Prism with a container other than Unity or MEF in your application, there are several things you need to do. First, you need to write a Service Locator adapter for your container. You can use the MefServiceLocatorAdapter and the UnityServiceLocatorAdapter as examples of how this can be done. You will also need to write a container-specific bootstrapper class. Next, you need to create a new container-specific bootstrapper, derived from the Bootstrapper class, and implement the necessary methods, using the MefBootstrapper and UnityBootstrapper as examples.

Logging

The Prism Library is designed to log messages throughout the library. To do this logging in a way that is not tied to a specific logging library, the Prism Library uses a logging façade, ILoggerFacade, to log its messages. This interface contains a single method named Log that logs messages. By default, the UnityBootstrapper and MefBoostrapper create a TextLogger as the designated logger.

There are three steps for creating and integrating a custom logger:

	Create a class that implements the ILoggerFacade interface.

	Implement the Log method.

	In your application bootstrapper class, override the CreateLogger method to return a new instance of your logging class.

The Log method in the ILoggerFacade interface takes three parameters:

	Message. This is the message to be logged.

	Category. This is the category of the event to be logged. The valid options are Debug, Exception, Info, and Warn.

	Priority. This is the priority of the event to be logged. The valid options are None, High, Medium, and Low.

The following code example shows a custom logger that wraps some other logging framework that takes only a string.

// CustomLogger
using Microsoft.Practices.Prism.Logging;
...

public class CustomLogger : ILoggerFacade
{
 public void Log(string message, Category category, Priority priority)
 {
 string messageToLog =
 String.Format(System.Globalization.CultureInfo.InvariantCulture,
 "{1}: {2}. Priority: {3}. Timestamp:{0:u}.",
 DateTime.Now,
 category.ToString().ToUpperInvariant(),
 message,
 priority.ToString());
 MyOtherLoggingFramework.Log(messageToLog);
 }
 }

// ApplicationBootstrapper
using Microsoft.Practices.Prism.Logging;
...

public class ApplicationBootstrapper : UnityBootstrapper
{
 ...
 protected override ILoggerFacade CreateLogger()
 {
 return new CustomLogger();
 }
}

Modules

The following sections describe how the modularity features can be extended during registration, assembly discovery, type discovery, and module initialization.

Adding Features to the Module Catalog

The Prism Library provides ModuleCatalog as both a class you can populate directly through the AddModule methods, or you can derive from add methods to populate the Items property.

The ModuleCatalog class in the Prism Library provides a lot of additional capabilities beyond the IModule interface. There are many different overloads of the AddModule method, module group dependency checking, and sorting. There are several ways to extend the functionality of the ModuleCatalog:

	Derive from ModuleCatalog. If you need to change the behavior of ModuleCatalog, derive a new class and override one of the virtual methods.

	Write extension methods on IModuleCatalog. If you need additional functionality in your application where you use IModuleCatalog, write an extension method on the interface.

	Write extension methods on ModuleCatalog. If you need additional functionality, but only in places where you use ModuleCatalog, write an extension method on the concrete type.

Discovering Modules from a Custom Source

The Prism Library supports populating the module catalog from application configuration and from a XAML file. You can extend Prism in your application to support loading from other data sources, such as a web service, database, or other external files.

The following describes several ways to populate the catalog.

	Use the static CreateFromXaml method. If your data is already in the Modularity:ModuleCatalog XAML schema, or if it can easily be converted, you can use this method to directly populate a ModuleCatalog.

	Replace the IConfigurationStore in the ConfigurationModuleCatalog. If you are running a WPF desktop application, you can implement an IConfigurationStore to return the module section for the ConfigurationModuleCatalog.

	Derive from ModuleCatalog. You can also follow the example of the ConfigurationModuleCatalog to derive from ModuleCatalog, acquire your data, and then call the AddModule method to populate the catalog.

The following code examples show how to load a custom configuration module file from disk.

// Bootstrapper
protected override Microsoft.Practices.Prism.Modularity.IModuleCatalog CreateModuleCatalog()
{
 ConfigurationModuleCatalog catalog = new ConfigurationModuleCatalog();
 catalog.Store = new MyModuleCatalogStore();
 return catalog;
}

// MyModuleCatalogStore
public class MyModuleCatalogStore : IConfigurationStore
{

 public ModulesConfigurationSection RetrieveModuleConfigurationSection()
 {
 ExeConfigurationFileMap fileMap = new ExeConfigurationFileMap()
 {
 ExeConfigFilename = "MyModuleCatalog.config"
 };
 Configuration configuration = ConfigurationManager.OpenMappedExeConfiguration(fileMap, ConfigurationUserLevel.None);
 return configuration.GetSection("modules") as ModulesConfigurationSection;
 }
}

Retrieving and Loading Modules from a Custom Assembly Source

If your application has a packaging or distribution mechanism other than assemblies, you can implement your own IModuleTypeLoader to download and access types.

The Prism 4.1 Library MefXapModuleTypeLoader class is an example of this. It uses the MEF DeploymentCatalog to download XAP files, locate the assemblies, and register them with the MEF catalog.

Each IModuleTypeLoader implements the CanLoadModuleType method to allow the ModuleManager to determine the appropriate type loader to use for obtaining a module. The following code example shows the MefXapModuleTypeLoader implementation.

// MefXapModuleTypeLoader.cs
public bool CanLoadModuleType(ModuleInfo moduleInfo)
{
 if (moduleInfo == null)
 {
 throw new ArgumentNullException("moduleInfo");
 }

 if (!string.IsNullOrEmpty(moduleInfo.Ref))
 {
 Uri uriRef;
 return Uri.TryCreate(moduleInfo.Ref, UriKind.RelativeOrAbsolute, out uriRef);
 }

 return false;
}

After you have your module type loader, you need to ensure it is in the ModuleManager‘s collection of type loaders. The following code example is from the Prism.MefExtensions.Silverlight project.

// MefModuleManager.Silverlight.cs
public override IEnumerable<IModuleTypeLoader> ModuleTypeLoaders
{
 get
 {
 if (this.mefTypeLoaders == null)
 {
 this.mefTypeLoaders = new List<IModuleTypeLoader>()
 { this.MefXapModuleTypeLoader }
 }
 return this.mefTypeLoaders;
 }
 set
 {
 this.mefTypeLoaders = value;
 }
}

Changing How Modules Are Initialized

Derive from ModuleManager. If you need to change the fundamental behavior of the module loading and initialization sequence, derive from a new class and override virtual methods.

Replace IModuleIntializer. If you need to change how module types are instantiated and initialized, replace **IModuleIntializer**.

Write a custom IModuleTypeLoader. If you need to change how assemblies are loaded and module types discovered within assemblies, write a custom **IModuleTypeLoader**. For more information, see the section, [Retrieving and Loading Modules from a Custom Assembly Source](#retrieving-and-loading-modules-from-a-custom-assembly-source).

Regions

The following sections describe how the region management features of the Prism Library can be extended when regions are attached to controls, how regions behave, and how a region discovers its views.

Region Adapters

Region adapters control how items placed in a region interact with the host control. The following sections describe how to extend this behavior by creating a custom region adapter and controlling the registration of the adapters.

Creating a Custom Region Adapter

To expose a UI control as a region, a region adapter is used. Region adapters are responsible for creating a region and associating it to the control. By doing this, developers can manage the UI control’s contents in a consistent way through the IRegion interface. Each region adapter adapts a particular type of UI control. The Prism Library provides three region adapters out-of-the-box:

	ContentControlRegionAdapter. This adapter adapts controls of type System.Windows.Controls.ContentControl and derived classes.

	SelectorRegionAdapter. This adapter adapts controls derived from the class System.Windows.Controls.Primitives.Selector, such as the System.Windows.Controls.TabControl control.

	ItemsControlRegionAdapter. This adapter adapts controls of type System.Windows.Controls.ItemsControl and derived classes.

There are some scenarios in which none of the preceding region adapters suit the developer needs. In those cases, custom region adapters can be created to adapt controls not supported by the Prism Library out-of-the-box.

Region adapters implement the Microsoft.Practices.Prism.Regions.IRegionAdapter interface. This interface defines a single method named Initialize that takes the object to adapt and returns a new region associated with the adapted control. The interface definition is shown in the following code.

public interface IRegionAdapter
{
 IRegion Initialize(object regionTarget, string regionName);
}

To create a region adapter, you derive your class from RegionAdapterBase

 <no title>

 #Glossary for the Prism Library for WPF

This glossary includes definitions of important terms that appear in the Prism documentation.

	bootstrapper. The class responsible for the initialization of an application built using the Prism Library.

	command. A loosely coupled way for you to handle user interface (UI) actions. Commands bind a UI gesture to the logic that performs the action.

	composite application. A composite application is composed of a number of discrete and independent modules. These components are integrated together in a host environment to form a single, seamless application.

	composite command. A command that has multiple child commands.

	container. Provides a layer of abstraction for the creation of objects. Dependency injection containers can reduce the dependency coupling between objects by providing the facility to instantiate instances of classes and manage their lifetime based on the configuration of the container.

	DelegateCommand. Allows delegating the commanding handling logic to selected methods instead of requiring a handler in the code-behind. It uses .NET Framework delegates as the method of invoking a target handling method.

	EventAggregator. A service that is primarily a container for events that allows publishers and subscribers to be decoupled so they can evolve independently. This decoupling is useful in modularized applications because new modules can be added that respond to events defined by the shell or other modules.

	modularity. The ability to create complex applications from discrete functional units named modules. When you develop in a modularized fashion, you structure the application into separate modules that can be individually developed, tested, and deployed by different teams. It also helps you address separation of concerns by keeping a clean separation between the UI and business functionality.

	model. Encapsulates the application’s business logic and data.

	Model-View-ViewModel (MVVM). The MVVM pattern helps to cleanly separate the business and presentation logic of your application from its user interface (UI). Maintaining a clean separation between application logic and UI helps to address numerous development and design issues and can make the application much easier to test, maintain, and evolve.

	module. A logical unit of separation in the application.

	ModuleCatalog. Defines the modules that the end user needs to run the application. The module catalog knows where the modules are located and the module’s dependencies.

	ModuleManager. The main class that manages the process of validating the module catalog, retrieving modules if they are remote, loading the modules into the application domain, and invoking the module’s Initialize method.

	module management phases. The phases that lead to a module being initialized. These phases are module discovery, module loading, and module initialization.

	navigation. The process by which the application coordinates changes to its UI as a result of the user’s interaction with the application, or as a result of internal application state changes.

	ViewModel-first composition. The composition approach where the view model is logically created first, followed by the view.

	Notifications. Provide change notifications to any data-bound controls in the view when the underlying property value changes. This is required to implement the MVVM pattern and is implemented using the BindableBase class.

	on-demand module. A module that is retrieved and initialized only when it is explicitly requested by the application.

	region. A named location that you can use to define where a view will appear. Modules can locate and add content to a region in the layout without exact knowledge of how and where the region is visually displayed. This allows the appearance and layout to change without affecting the modules that add the content to the layout.

	RegionContext. A technique that can be used to share context between a parent view and child views that are hosted in a region. The RegionContext can be set through code or by using data binding XAML.

	RegionManager. The class responsible for maintaining a collection of regions and creating new regions for controls. The RegionManager finds an adapter mapped to a WPF control and associates a new region to that control. The RegionManager also supplies the attached property that can be used for simple region creation from XAML.

	Separated Presentation pattern. Pattern used to implement views, which separates presentation and business logic from the UI. Using a separated presentation allows presentation and business logic to be tested independently of the UI, makes it easier to maintain code, and increases re-use opportunities.

	shell. The main window of a WPF application where the primary UI content is contained.

	scoped region. Regions that belong to a particular region scope. The region scope is delimited by a parent view and includes all the child views of the parent view.

	service. A service provides functionality to other modules in a loosely coupled way through an interface and is often a singleton.

	state-based navigation. Navigation accomplished via state changes to existing controls in the visual tree.

	UI composition. The act of building an interface by composing it from discrete views at run time, likely from separate modules.

	view. The main unit of UI construction within a composite UI application. The view encapsulates the UI and UI logic that you would like to keep as decoupled as possible from other parts of the application. You can define a view as a user control, data template, or even a custom control.

	view-based navigation. Navigation accomplished via the addition or removal of elements from the visual tree.

	view-first composition. The composition approach where the view is logically created first, followed by the view model or presenter on which it depends.

	view discovery. A way to add, show, or remove views in a region by associating the type of a view with a region name. Whenever a region with that name displays, the registered views will be automatically created and added to the region.

	view injection. A way to add, show, or remove views in a region by adding or removing instances of a view to a region. The code interacting with the region does not have direct knowledge of how the region will handle displaying the view.

	view model. Encapsulates the presentation logic and state for the view. It is responsible for coordinating the view’s interaction with any model classes that are required.

	view model location. Locates and instantiates view models and associating to their respective views typically by using a convention base approach.

 Patterns in the Prism Library for WPF

Patterns in the Prism Library for WPF

When you build applications, you typically encounter or employ patterns. In the Prism Library and example reference implementation, the guidance demonstrates the Adapter, Application Controller, Command, Composite and Composite View, Dependency Injection, Event Aggregator, Façade, Inversion of Control, Observer, Model-View-ViewModel (MVVM), Registry, Repository, Separated Interface, Plug-In, and Service Locator patterns that are briefly discussed in this appendix. The following illustration shows a typical composite application architecture using the Prism Library and some of the common patterns. A simpler application would likely encounter some of these patterns while using Prism, but not necessarily all of them.

[image: Sample composite application architecture with common patterns]

Sample composite application architecture with common patterns

This section provides a brief overview of the patterns in alphabetical order and pointers to where you can see an example of each pattern in the Prism code.

Adapter

The Adapter pattern, as the name implies, adapts the interface of one class to match the interface expected by another class. In the Prism Library, the Adapter pattern is used to adapt regions to the Windows Presentation Foundation (WPF) ItemsControl, ContentControl, and Selector. To see the Adapters pattern applied, see the file ItemsControlRegionAdapter.cs in the Prism Library.

Application Controller Pattern

The Application Controller pattern allows you to separate the responsibility of creating and displaying views into a controller class. This kind of controller is a little different than the controller in an MVC application. The application controller’s responsibility is to encapsulate the control of view presentation. It can take care of instantiating views; it does this by placing them in the appropriate container in the user interface (UI), switching between views that share the same container, and sometimes coordinates communication between views or view models. Even though the name of the pattern is Application Controller, controllers are often scoped to a subset of an application, such as a module controller in a Prism application or a controller that spans a set of related views. As a result, you will often have more than one controller in a Prism application. For an example implementation of this pattern, see the OrdersController class in the Stock Trader Reference Implementation (Stock Trader RI).

Command Pattern

The Command pattern is a design pattern in which objects are used to represent actions. A command object encapsulates an action and its parameters. This allows a decoupling of the invoker of the command and the handlers of the command. The Prism.Mvvm Library provides a CompositeCommand that allows combining of multiple ICommand items and a DelegateCommand that allows a ViewModel or controller to provide an ICommand that connects to local methods for execution and notification of ability to execute. To see the usage of the CompositeCommand and the DelegateCommand in the Stock Trader RI, see the files StockTraderRICommands.cs and OrderDetailsViewModel.cs.

Composite and Composite View

At the heart of a composite application is the ability to combine individual views into a composite view. Frequently, the composing view defines a layout for the child views. For example, the shell of the application may define a navigation area and content area to host child views at run time, as shown in the following illustration.

[image: Composition example]

In the Stock Trader RI, this can be seen with the use of regions in the shell. The shell defines regions that modules locate and add views to during the initialization process. For examples of defining regions, see the Shell.xaml file.

Composite views do not have to be dynamically composed, as is the case when using Prism’s regions. A composite view can also just be a view that is built up of several other child views that are statically composed through the UI definition. An example of this is child user controls that are declared in the Extensible Application Markup Language (XAML).

Dependency Injection Pattern

The Dependency Injection pattern is a specialized version of the Inversion of Control pattern (described later in this appendix) where the concern being inverted is the process of obtaining the needed dependency. Dependency Injection is used throughout the Stock Trader RI and the Prism Library. When using a container, the responsibility of construction is put on the container instead of the consuming class. During object construction, the dependency injection container resolves any external dependencies. Because of this, the concrete implementation of the dependencies can be changed more readily as the system evolves. This better supports testability and growth of a system over time due to looser coupling. The Stock Trader RI uses the Managed Extensibility Framework (MEF) to help manage dependencies between components. However, the Prism Library itself is not tied to a specific dependency injection container; you are free to choose whichever dependency injection container you want, but you must provide an adapter that implements the IServiceLocator interface. The Prism Library provides adapters for both the MEF and Unity Application Block (Unity). To see an example of a component with its dependencies resolved by injection in the Stock Trader RI, see the constructor in the NewsController.cs file. For examples using Unity, see the ModuleInit class in the UI Composition QuickStart.

Event Aggregator Pattern

The Event Aggregator pattern channels events from multiple objects through a single object to simplify registration for clients. In the Prism Library, a variation of the Event Aggregator pattern allows multiple objects to locate and publish or subscribe to events. To see the EventAggregator and the events it manages, see EventAggregator and the PubSubEvent in the Prism.PubSubEvents Library. To see the usage of the EventAggregator in the Stock Trader RI, see the file WatchListViewModel.cs.

Façade Pattern

The Façade pattern simplifies a more complex interface, or set of interfaces, to ease their use or to isolate access to those interfaces. The Prism Library provides façades for the container and the logging services to help isolate the library from changes in those services. This allows the consumer of the library to provide its own services that will work with the Prism Library. The IServiceLocator and ILoggerFacade interfaces define the façade interfaces the Prism Library expects when it communicates with a container or logging service.

Inversion of Control Pattern

Frequently, the Inversion of Control (IoC) pattern is used to enable extensibility in a class or framework. For example, a class designed with an eventing model at certain points of execution inverts control by allowing event listeners to take action when the event is invoked.

Two forms of the IoC pattern demonstrated in the Prism Library and Stock Trader RI include dependency injection and the Template Method pattern. Dependency injection is described earlier. In the Template Method pattern, a base class provides a recipe, or process, that calls virtual or abstract methods. Because of this, an inherited class can override appropriate methods to enable the behavior required. In the Prism Library, this is shown in the UnityServiceLocatorAdapter class. To see another example of using the Template pattern, see the file StockTraderRIBootstrapper.cs in the Stock Trader RI.

Observer Pattern

The Observer pattern seeks to decouple those interested in an object’s state change from the changing object. In the .NET Framework, this is often seen through events. Prism demonstrates a variation of the Observer pattern to separate the request for interaction with the user from the actual chosen interaction. This is done through an InteractionRequest object that is often offered by a view model in the Model-View-ViewModel (MVVM) pattern.

This InteractionRequest is an object that encapsulates an event monitored by the view. When the view receives an interaction request, it can choose how to handle the interaction. A view may decide to display a modal window to provide feedback to the user, or it may display an unobtrusive notification without interrupting the user’s workflow. Offering this request as an object provides a way to data-bind in WPF to the request and to specify the response without requiring code-behind in the view.

Model-View-ViewModel Pattern

Presentation Model is one of several UI patterns that focus on keeping the logic for the presentation separate from the visual representation. This is done to separate the concerns of visual presentation from that of visual logic, which helps improve maintainability and testability. Related UI patterns include Model-View-Controller (MVC) and Model-View-Presenter (MVP). The Model-View-ViewModel (MVVM) approach, demonstrated in the Prism’s Stock Trader RI, is a specific implementation variant of the Presentation Model pattern.

The Prism Library itself is intended to be neutral with respect to choice of separated UI patterns. You can be successful with any of the patterns, although considering the facilities in WPF for data binding, commands, and behaviors, the MVVM pattern is the recommended approach and the Prism guidance provides documentation and samples to get you started using MVVM. To see examples of MVVM in the Basic MVVM QuickStart, see the files QuestionnaireView.xaml, QuestionnaireView.xaml.cs, and QuestionnaireViewModel.cs.

Registry Pattern

The Registry pattern specifies an approach to locating one or more objects from a well-known object. The Prism Library applies the Registry pattern when associating view types to a region. The IRegionViewRegistry interface and RegionViewRegistry class define a registry used to associate region names to the view types created when those regions are loaded. This registry is used in the ModuleInit.cs file in the UI Composition QuickStart.

Repository Pattern

A repository allows you to separate how you acquire data for an application from the code that needs the data. The repository represents a collection of domain objects that the application code can consume without needing to be coupled to the specific mechanism that retrieves those objects. The domain objects are part of the model of the application, and by obtaining those objects through a repository, the repository retrieval and update strategy can be changed without affecting the rest of the application. Additionally, the repository interface becomes an easy dependency to substitute for the purposes of unit testing.

Separated Interface and Plug-In

The ability to locate and load modules at run time opens greater opportunities for parallel development, expands module deployment choices, and encourages a more loosely coupled architecture. The following patterns enable this ability:

	Separated Interface. This pattern reduces coupling by placing the interface definition in a separate package from the implementation. When using Prism with Unity, each module implements the IModule interface. For an example of implementing a module in the UI Composition Quickstart, see the file ModuleInit.cs.

	Plug-In. This pattern allows the concrete implementation of a class to be determined at run time to avoid requiring recompilation when changing which concrete implementation is used or because of changes in the concrete implementation. In the Prism Library, this is handled through the DirectoryModuleCatalog, ConfigurationModuleCatalog, and the ModuleInitializer, which work together to locate and initialize IModule plug-ins. For examples of supporting plug-ins, see the files DirectoryModuleCatalog.cs, ConfigurationModuleCatalog.cs, and ModuleInitializer.cs in the Prism Library.

Note: MEF was designed to support the plug-in model, allowing components to declaratively export and import concrete implementations.

Service Locator Pattern

The Service Locator pattern solves the same problems that the Dependency Injection pattern solves, but it uses a different approach. It allows classes to locate specific services they are interested in without needing to know who implements the service. Frequently, this is used as an alternative to dependency injection, but there are times when a class will need to use service location instead of dependency injection, such as when it needs to resolve multiple implementers of a service. In the Prism Library, this can be seen when the ModuleInitializer service resolves individual IModules. For an example of using the UnityContainer to locate a service in the UI Composition Quickstart, see the file ModuleInit.cs.

More Information

The following are references and links to the patterns found in the Stock Trader RI and in the Prism Library:

	Composite pattern in Chapter 4, “Structural Patterns,” in Design Patterns: Elements of Reusable Object-Oriented Software.

	Adapter pattern in Chapter 4, “Structural Patterns,” in Design Patterns: Elements of Reusable Object-Oriented Software.

	Façade pattern in Chapter 4, “Structural Patterns,” in Design Patterns: Elements of Reusable Object-Oriented Software.

	Template Method pattern in Chapter 5, “Behavioral Patterns,” in Design Patterns: Elements of Reusable Object-Oriented Software.

	Observer pattern in Chapter 5, “Behavioral Patterns,” in Design Patterns: Elements of Reusable Object-Oriented Software.

	Exploring the Observer Design Pattern [http://msdn.microsoft.com/en-us/library/Ee817669(pandp.10).aspx] on MSDN.

	Repository pattern [http://www.martinfowler.com/eaaCatalog/repository.html] in Patterns of Enterprise Application Architecture by Martin Fowler or the abbreviated version on his website.

	Inversion of Control containers and the Dependency Injection [http://www.martinfowler.com/articles/injection.html] pattern on Martin Fowler’s website.

	Plugin pattern [http://www.martinfowler.com/eaaCatalog/plugin.html] on Martin Fowler’s website.

	Registry pattern [http://martinfowler.com/eaaCatalog/registry.html] on Martin Fowler’s website.

	Presentation Model pattern [http://www.martinfowler.com/eaaDev/PresentationModel.html] on Martin Fowler’s website.

	Event Aggregator pattern [http://www.martinfowler.com/eaaDev/EventAggregator.html] on Martin Fowler’s website.

	Separated Interface pattern [http://www.martinfowler.com/eaaCatalog/separatedInterface.html] on Martin Fowler’s website.

	MVC and MVP variants [http://martinfowler.com/eaaDev/uiArchs.html] on Martin Fowler’s website.

	Design Patterns: Dependency Injection [http://msdn.microsoft.com/en-us/magazine/cc163739.aspx] by Griffin Caprio on MSDN.

	Model-View-ViewModel pattern [http://blogs.msdn.com/johngossman/archive/2005/10/08/478683.aspx] on John Gossman’s blog.

For more information about the Unity Application Block, see Unity Application Block [http://www.msdn.com/unity] on MSDN.

(1) Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley Professional, 1995.

 Initializing Applications Using the Prism Library for WPF

Initializing Applications Using the Prism Library for WPF

This topic addresses what needs to happen to get a Prism for WPF application up and running. A Prism application requires registration and configuration during the application startup process—this is known as bootstrapping the application. The Prism bootstrapping process includes creating and configuring a module catalog, creating a dependency injection container such as Unity, configuring default region adapter for UI composition, creating and initializing the shell view, and initializing modules.

What Is a Bootstrapper?

A bootstrapper is a class that is responsible for the initialization of an application built using the Prism Library. By using a bootstrapper, you have more control of how the Prism Library components are wired up to your application.

The Prism Library includes a default abstract Bootstrapper base class that can be specialized for use with any container. Many of the methods on the bootstrapper classes are virtual methods. You can override these methods as appropriate in your own custom bootstrapper implementation.

[image: Basic stages of the bootstrapping process]

Basic stages of the bootstrapping process.

The Prism Library provides some additional base classes, derived from Bootstrapper, that have default implementations that are appropriate for most applications. The only stages left for your application bootstrapper to implement are creating and initializing the shell.

Dependency Injection

Applications built with the Prism Library rely on dependency injection provided by a container. The library provides assemblies that work with the Unity Application Block (Unity) or Managed Extensibility Framework (MEF), and it allows you to use other dependency injection containers. Part of the bootstrapping process is to configure this container and register types with the container.

The Prism Library includes the UnityBootstrapper and MefBootstrapper classes, which implement most of the functionality necessary to use either Unity or MEF as the dependency injection container in your application. In addition to the stages shown in the previous illustration, each bootstrapper adds some steps specific to its container.

Creating the Shell

In a traditional Windows Presentation Foundation (WPF) application, a startup Uniform Resource Identifier (URI) is specified in the App.xaml file that launches the main window.

In an application created with the Prism Library, it is the bootstrapper’s responsibility to create the shell or the main window. This is because the shell relies on services, such as the Region Manager, that need to be registered before the shell can be displayed.

Key Decisions

After you decide to use the Prism Library in your application, there are a number of additional decisions that need to be made:

	You will need to decide whether you are using MEF, Unity, or another container for your dependency injection container. This will determine which provided bootstrapper class you should use and whether you need to create a bootstrapper for another container.

	You should think about the application-specific services you want in your application. These will need to be registered with the container.

	Determine whether the built-in logging service is adequate for your needs or if you need to create another logging service.

	Determine how modules will be discovered by the application: via explicit code declarations, code attributes on the modules discovered via directory scanning, configuration, or XAML.

The rest of this topic provides more details.

Core Scenarios

Creating a startup sequence is an important part of building your Prism application. This section describes how to create a bootstrapper and customize it to create the shell, configure the dependency injection container, register application level services, and how to load and initialize the modules.

Creating a Bootstrapper for Your Application

If you choose to use either Unity or MEF as your dependency injection container, creating a simple bootstrapper for your application is easy. You will need to create a new class that derives from either MefBootstrapper or UnityBootstrapper. Then, implement the CreateShell method. Optionally, you may override the InitializeShell method for shell specific initialization.

Implementing the CreateShell Method

The CreateShell method allows a developer to specify the top-level window for a Prism application. The shell is usually the MainWindow or MainPage. Implement this method by returning an instance of your application’s shell class. In a Prism application, you can create the shell object, or resolve it from the container, depending on your application’s requirements.

An example of using the ServiceLocator to resolve the shell object is shown in the following code example.

protected override DependencyObject CreateShell()
{
 return ServiceLocator.Current.GetInstance<Shell>();
}

Note: You will often see the ServiceLocator being used to resolve instances of types instead of the specific dependency injection container. The ServiceLocator is implemented by calling the container, so it makes a good choice for container agnostic code. You can also directly reference and use the container instead of the ServiceLocator.

Implementing the InitializeShell Method

After you create a shell, you may need to run initialization steps to ensure that the shell is ready to be displayed. For WPF applications, you will create the shell application object and set it as the application’s main window, as shown here (from the Modularity QuickStarts for WPF).

protected override void InitializeShell()
{
 Application.Current.MainWindow = Shell;
 Application.Current.MainWindow.Show();
}

The base implementation of InitializeShell does nothing. It is safe to not call the base class implementation.

Creating and Configuring the Module Catalog

If you are building a module application, you will need to create and configure a module catalog. Prism uses a concrete IModuleCatalog instance to keep track of what modules are available to the application, which modules may need to be downloaded, and where the modules reside.

The Bootstrapper provides a protected ModuleCatalog property to reference the catalog as well as a base implementation of the virtual CreateModuleCatalog method. The base implementation returns a new ModuleCatalog; however, this method can be overridden to provide a different IModuleCatalog instance instead, as shown in the following code from the QuickStartBootstrapper in the Modularity with MEF for WPF QuickStart.

protected override IModuleCatalog CreateModuleCatalog()
{
 // When using MEF, the existing Prism ModuleCatalog is still
 // the place to configure modules via configuration files.
 return new ConfigurationModuleCatalog()
}

In both the UnityBootstrapper and MefBootstrapper classes, the Run method calls the CreateModuleCatalog method and then sets the class’s ModuleCatalog property using the returned value. If you override this method, it is not necessary to call the base class’s implementation because you will replace the provided functionality. For more information about modularity, see “Modular Application Development.”

Creating and Configuring the Container

Containers play a key role in an application created with the Prism Library. Both the Prism Library and the applications built on top of it depend on a container for injecting required dependencies and services. During the container configuration phase, several core services are registered. In addition to these core services, you may have application-specific services that provide additional functionality as it relates to composition.

Core Services

The following table lists the core non-application specific services in the Prism Library.

Service interface	Description
————————	——–
IModuleManager	Defines the interface for the service that will retrieve and initialize the application’s modules.
IModuleCatalog	Contains the metadata about the modules in the application. The Prism Library provides several different catalogs.
IModuleInitializer	Initializes the modules.
IRegionManager	Registers and retrieves regions, which are visual containers for layout.
IEventAggregator	A collection of events that is loosely coupled between the publisher and the subscriber.
ILoggerFacade	A wrapper for a logging mechanism, so you can choose your own logging mechanism. The Stock Trader Reference Implementation (Stock Trader RI) uses the Enterprise Library Logging Application Block, via the EnterpriseLibraryLoggerAdapter class, as an example of how you can use your own logger. The logging service is registered with the container by the bootstrapper’s Run method, using the value returned by the CreateLogger method. Registering another logger with the container will not work; instead override the CreateLogger method on the bootstrapper.
IServiceLocator	Allows the Prism Library to access the container. If you want to customize or extend the library, this may be useful.

There are two Bootstrapper-derived classes available in Prism, the UnityBootstrapper and the MefBootstrapper. Creating and configuring the different containers involve similar concepts that are implemented differently.

Creating and Configuring the Container in the UnityBootstrapper

The UnityBootstrapper class’s CreateContainer method simply creates and returns a new instance of a UnityContainer. In most cases, you will not need to change this functionality; however, the method is virtual, thereby allowing that flexibility.

After the container is created, it probably needs to be configured for your application. The ConfigureContainer implementation in the UnityBootstrapper registers a number of core Prism services by default, as shown here.

Note: An example of this is when a module registers module-level services in its Initialize method.

 // UnityBootstrapper.cs
protected virtual void ConfigureContainer()
{
 ...

 if (useDefaultConfiguration)
 {
 RegisterTypeIfMissing(typeof(IServiceLocator), typeof(UnityServiceLocatorAdapter), true);
 RegisterTypeIfMissing(typeof(IModuleInitializer), typeof(ModuleInitializer), true);
 RegisterTypeIfMissing(typeof(IModuleManager), typeof(ModuleManager), true);
 RegisterTypeIfMissing(typeof(RegionAdapterMappings), typeof(RegionAdapterMappings), true)
 RegisterTypeIfMissing(typeof(IRegionManager), typeof(RegionManager), true);
 RegisterTypeIfMissing(typeof(IEventAggregator), typeof(EventAggregator), true);
 RegisterTypeIfMissing(typeof(IRegionViewRegistry), typeof(RegionViewRegistry), true);
 RegisterTypeIfMissing(typeof(IRegionBehaviorFactory), typeof(RegionBehaviorFactory), true);
 RegisterTypeIfMissing(typeof(IRegionNavigationJournalEntry), typeof(RegionNavigationJournalEntry), false);
 RegisterTypeIfMissing(typeof(IRegionNavigationJournal), typeof(RegionNavigationJournal), false);
 RegisterTypeIfMissing(typeof(IRegionNavigationService), typeof(RegionNavigationService), false);
 RegisterTypeIfMissing(typeof(IRegionNavigationContentLoader), typeof(UnityRegionNavigationContentLoader), true);

 }
}

The bootstrapper’s RegisterTypeIfMissing method determines whether a service has already been registered—it will not register it twice. This allows you to override the default registration through configuration. You can also turn off registering any services by default; to do this, use the overloaded Bootstrapper.Run method passing in false. You can also override the ConfigureContainer method and disable services that you do not want to use, such as the event aggregator.

Note: If you turn off the default registration, you will need to manually register required services.

To extend the default behavior of ConfigureContainer, simply add an override to your application’s bootstrapper and optionally call the base implementation, as shown in the following code from the QuickStartBootstrapper from the Modularity for WPF (with Unity) QuickStart. This implementation calls the base class’s implementation, registers the ModuleTracker type as the concrete implementation of IModuleTracker, and registers the callbackLogger as a singleton instance of CallbackLogger with Unity.

protected override void ConfigureContainer()
{
 base.ConfigureContainer();

 this.RegisterTypeIfMissing(typeof(IModuleTracker), typeof(ModuleTracker), true);
 this.Container.RegisterInstance<CallbackLogger>(this.callbackLogger);
}

Creating and Configuring the Container in the MefBootstrapper

The MefBootstrapper class’s CreateContainer method does several things. First, it creates an AssemblyCatalog and a CatalogExportProvider. The CatalogExportProvider allows the MefExtensions assembly to provide default exports for a number of Prism types and still allows you to override the default type registration. Then CreateContainer creates and returns a new instance of a CompositionContainer using the CatalogExportProvider. In most cases, you will not need to change this functionality; however, the method is virtual, thereby allowing that flexibility.

After the container is created, it needs to be configured for your application. The ConfigureContainer implementation in the MefBootstrapper registers a number of core Prism services by default, as shown in the following code example. If you override this method, consider carefully whether you should invoke the base class’s implementation to register the core Prism services, or if you will provide these services in your implementation.

protected virtual void ConfigureContainer()
{
 this.RegisterBootstrapperProvidedTypes();
}

protected virtual void RegisterBootstrapperProvidedTypes()
{
 this.Container.ComposeExportedValue<ILoggerFacade>(this.Logger);
 this.Container.ComposeExportedValue<IModuleCatalog>(this.ModuleCatalog);
 this.Container.ComposeExportedValue<IServiceLocator>(new MefServiceLocatorAdapter(this.Container));
 this.Container.ComposeExportedValue<AggregateCatalog>(this.AggregateCatalog);
}

Note: In the MefBootstrapper, the core services of Prism are added to the container as singletons so they can be located through the container throughout the application.

In addition to providing the CreateContainer and ConfigureContainer methods, the MefBootstrapper also provides two methods to create and configure the AggregateCatalog used by MEF. The CreateAggregateCatalog method simply creates and returns an AggregateCatalog object. Like the other methods in the MefBootstrapper, CreateAggregateCatalog is virtual and can be overridden if necessary.

The ConfigureAggregateCatalog method allows you to add type registrations to the AggregateCatalog imperatively. For example, the QuickStartBootstrapper from the Modularity with MEF QuickStart explicitly adds ModuleA and ModuleC to the AggregateCatalog, as shown here.

protected override void ConfigureAggregateCatalog()
{
 base.ConfigureAggregateCatalog();

 // Add this assembly to export ModuleTracker
 this.AggregateCatalog.Catalogs.Add(
 new AssemblyCatalog(typeof(QuickStartBootstrapper).Assembly));

 // Module A is referenced in in the project and directly in code.
 this.AggregateCatalog.Catalogs.Add(
 new AssemblyCatalog(typeof(ModuleA.ModuleA).Assembly));

 this.AggregateCatalog.Catalogs.Add(
 new AssemblyCatalog(typeof(ModuleC.ModuleC).Assembly));

 // Module B and Module D are copied to a directory as part of a post-build step.
 // These modules are not referenced in the project and are discovered by inspecting a directory.
 // Both projects have a post-build step to copy themselves into that directory.
 DirectoryCatalog catalog = new DirectoryCatalog("DirectoryModules");
 this.AggregateCatalog.Catalogs.Add(catalog);
}

More Information

For more information about MEF, AggregateCatalog, and AssemblyCatalog, see Managed Extensibility Framework Overview [http://msdn.microsoft.com/en-us/library/dd460648.aspx] on MSDN.

 Communicating Between Loosely Coupled Components Using the Prism Library for WPF

Communicating Between Loosely Coupled Components Using the Prism Library for WPF

When building large complex WPF applications, a common approach is to divide the functionality into discrete module assemblies. It is also desirable to minimize the use of static references between these modules, which can be accomplished through the use of delegate commands, region context, shared services, and event aggregator. This allows the modules to be independently developed, tested, deployed, and updated, and it forces loosely coupled communication. This topic provides guidance when to use delegate commands and routed commands and when to use event aggregator and .NET framework events.

When communicating between modules, it is important that you know the differences between the approaches so that you can best determine which approach to use in your particular scenario. The Prism Library provides the following communication approaches:

	Solution commanding. Use when there is an expectation of immediate action from the user interaction.

	Region context. Use this to provide contextual information between the host and views in the host’s region. This approach is somewhat similar to the DataContext, but it does not rely on it.

	Shared services. Callers can call a method on the service which raises an event to the receiver of the message. Use this if none of the preceding is applicable.

	Event aggregation. For communication across view models, presenters, or controllers when there is not a direct action-reaction expectation.

Solution Commanding

If you need to respond to a user gesture, such as clicking on a command invoker (for example, a button or menu item), and if you want the invoker to be enabled based on business logic, use commanding.

Windows Presentation Foundation (WPF) provides RoutedCommand, which is good at connecting command invokers, such as menu items and buttons, with command handlers that are associated with the current item in the visual tree that has keyboard focus.

However, in a composite scenario, the command handler is often a view model that does not have any associated elements in the visual tree or is not the focused element. To support this scenario, the Prism Library provides DelegateCommand, which allows you to call a delegate method when the command is executed, and CompositeCommand, which allows you to combine multiple commands. These commands are different from the built-in RoutedCommand, which will route command execution and handling up and down the visual tree. This allows you to trigger a command at a point in the visual tree and handle it at a higher level.

The CompositeCommand is an implementation of ICommand so that it can be bound to invokers. CompositeCommands can be connected to several child commands; when the CompositeCommand is invoked, the child commands are also invoked.

CompositeCommands support enablement. CompositeCommands listen to the CanExecuteChanged event of each one of its connected commands. It then raises this event notifying its invoker(s). The invoker(s) reacts to this event by calling CanExecute on the CompositeCommand. The CompositeCommand then again polls all its child commands by calling CanExecute on each child command. If any call to CanExecute returns false, the CompositeCommand will return false, thus disabling the invoker(s).

How does this help you with cross module communication? Applications based on the Prism Library may have global CompositeCommands that are defined in the shell that have meaning across modules, such as Save, Save All, and Cancel. Modules can then register their local commands with these global commands and participate in their execution.

Note: DelegateCommand and CompositeCommand can be found in the Prism.Commands namespace which is located in the Prism.Core NuGet package.

About WPF Routed Events and Routed Commands

A routed event is a type of event that can invoke handlers on multiple listeners in an element tree, instead of notifying only the object that directly subscribed to the event. WPF-routed commands deliver command messages through UI elements in the visual tree, but the elements outside the tree will not receive these messages because they only bubble up or down from the focused element or an explicitly stated target element. Routed events can be used to communicate through the element tree, because the event data for the event is perpetuated to each element in the route. One element could change something in the event data, and that change would be available to the next element in the route.

Therefore, you should use WPF routed events in the following scenarios: defining common handlers at a common root or defining your own custom control class.

Creating a Delegate Command

To create a delegate command, instantiate a DelegateCommand field in the constructor of your view model, and then expose it as an ICommand property.

// ArticleViewModel.cs
public class ArticleViewModel : BindableBase
{
 private readonly ICommand showArticleListCommand;

 public ArticleViewModel(INewsFeedService newsFeedService,
 IRegionManager regionManager,
 IEventAggregator eventAggregator)
 {
 this.showArticleListCommand = new DelegateCommand(this.ShowArticleList);
 }

 public ICommand ShowArticleListCommand
 {
 get { return this.showArticleListCommand; }
 }
}

Creating a Composite Command

To create a composite command, instantiate a CompositeCommand field in the constructor, add commands to it, and then expose it as an ICommand property.

public class MyViewModel : BindableBase
{
 private readonly CompositeCommand saveAllCommand;

 public ArticleViewModel(INewsFeedService newsFeedService,
 IRegionManager regionManager,
 IEventAggregator eventAggregator)
 {
 this.saveAllCommand = new CompositeCommand();
 this.saveAllCommand.RegisterCommand(new SaveProductsCommand());
 this.saveAllCommand.RegisterCommand(new SaveOrdersCommand());
 }

 public ICommand SaveAllCommand
 {
 get { return this.saveAllCommand; }
 }
}

Making a Command Globally Available

Typically, to create a globally available command, create an instance of the DelegateCommand or the CompositeCommand and expose it through a static class.

public static class GlobalCommands
{
 public static CompositeCommand MyCompositeCommand = new CompositeCommand();
}

In your module, associate child commands to the globally available command.

GlobalCommands.MyCompositeCommand.RegisterCommand(command1);
GlobalCommands.MyCompositeCommand.RegisterCommand(command2);

Note: To increase the testability of your code, you can use a proxy class to access the globally available commands and mock that proxy class in your tests.

Binding to a Globally Available Command

The following code example shows how to bind a button to the command in WPF.

<Button Name="MyCompositeCommandButton" Command="{x:Static local:GlobalCommands.MyCompositeCommand}">Execute My Composite Command</Button>

Note: Another approach is to store the command as a resource inside the App.xaml file in the Application.Resources section. Then, in the view—which must be created after setting that resource—you can set Command=”{Binding MyCompositeCommand, Source={StaticResource GlobalCommands}}” to add an invoker to the command.

Region Context

There are a lot of scenarios where you might want to share contextual information between the view that is hosting a region and a view that is inside a region. For example, a master detail–like view shows a business entity and exposes a region to show additional detail information for that business entity. The Prism Library uses a concept named RegionContext to share an object between the host of the region and any views that are loaded inside the region, as shown in the following illustration.

[image: Using the RegionContext]

Depending on the scenario, you can choose to share a single piece of information (such as an identifier) or a shared model. The view can retrieve the RegionContext, and then sign up for change notifications. The view can also change the RegionContext‘s value. There are several ways of exposing and consuming the RegionContext:

	You can expose RegionContext to a region in Extensible Application Markup Language (XAML).

	You can expose RegionContext to a region in code.

	You can consume RegionContext from a view inside a region.

Note: The Prism Library currently only supports consuming the RegionContext from a view inside a region if that view is a DependencyObject. If your view is not a DependencyObject (for example, you are using WPF automatic data templates and adding your view model directly in the region), consider creating a custom RegionBehavior to forward the RegionContext to your view objects.

About the Data Context Property

Data context is a concept that allows elements to inherit information from their parent elements about the data source that is used for binding. Child elements automatically inherit the DataContext of their parent element. The data flows down the visual tree.

Shared Services

Another method of cross-module communication is through shared services. When the modules are loaded, modules add their services to the service locator. Typically, services are registered and retrieved from a service locator by common interface types. This allows modules to use services provided by other modules without requiring a static reference to the module. Service instances are shared across modules, so you can share data and pass messages between modules.

In the Stock Trader Reference Implementation (Stock Trader RI), the Market module provides an implementation of IMarketFeedService. The Position module consumes these services by using the shell application’s dependency injection container, which provides service location and resolution. The IMarketFeedService is meant to be consumed by other modules, so it can be found in the StockTraderRI.Infrastructure common assembly, but the concrete implementation of this interface does not need to be shared, so it is defined directly in the Market module and can be updated independently of other modules.

To see how these services are exported into MEF, see the MarketFeedService.cs and MarketHistoryService.cs files, as shown in the following code example. The Position module’s ObservablePosition receives the IMarketFeedService service through constructor dependency injection.

// MarketFeedService.cs
[Export(typeof(IMarketFeedService))]
[PartCreationPolicy(CreationPolicy.Shared)]
public class MarketFeedService : IMarketFeedService, IDisposable
{
 ...
}

This helps with cross-module communication because service consumers do not need a static reference to modules providing the service. This service can be used to send or receive data between modules.

Note: Some dependency injection containers allow the registration of dependencies using attributes, as shown in this example. Other containers may use explicit registration. In these cases, the registration typically occurs during module loading when Prism invokes the IModule.Initialize method. See Modular Application Development for more information.

Event Aggregation

The Prism Library provides an event mechanism that enables communications between loosely coupled components in the application. This mechanism, based on the event aggregator service, allows publishers and subscribers to communicate through events and still do not have a direct reference to each other.

The EventAggregator provides multicast publish/subscribe functionality. This means there can be multiple publishers that raise the same event and there can be multiple subscribers listening to the same event. Consider using the EventAggregator to publish an event across modules and when sending a message between business logic code, such as controllers and presenters.

One example of this, from the Stock Trader RI, is when the Process Order button is clicked and the order successfully processes; in this case, other modules need to know the order is successfully processed so they can update their views.

Events created with the Prism Library are typed events. This means you can take advantage of compile-time type checking to detect errors before you run the application. In the Prism Library, the EventAggregator allows subscribers or publishers to locate a specific EventBase. The event aggregator also allows for multiple publishers and multiple subscribers, as shown in the following illustration.

[image: Using the event aggregator]

About .NET Framework Events

Using .NET Framework events is the most simple and straightforward approach for communication between components if loose coupling is not a requirement. Events in the .NET Framework implement the Publish-Subscribe pattern, but to subscribe to an object, you need a direct reference to that object, which, in composite applications, typically resides in another module. This results in a tightly coupled design. Therefore, .NET Framework events are used for communication within modules instead of between modules.

If you use .NET Framework events, you have to be very careful of memory leaks, especially if you have a non-static or short-lived component that subscribes to an event on a static or longer-lived one. If you do not unsubscribe the subscriber, it will be kept alive by the publisher, and this will prevent the first one from being garbage-collected.

IEventAggregator

The EventAggregator class is offered as a service in the container and can be retrieved through the IEventAggregator interface. The event aggregator is responsible for locating or building events and for keeping a collection of the events in the system.

public interface IEventAggregator
{
 TEventType GetEvent<TEventType>() where TEventType : EventBase;
}

The EventAggregator constructs the event on its first access if it has not already been constructed. This relieves the publisher or subscriber from needing to determine whether the event is available.

PubSubEvent

The real work of connecting publishers and subscribers is done by the PubSubEvent class. This is the only implementation of the EventBase class that is included in the Prism Library. This class maintains the list of subscribers and handles event dispatching to the subscribers.

The PubSubEvent class is a generic class that requires the payload type to be defined as the generic type. This helps enforce, at compile time, that publishers and subscribers provide the correct methods for successful event connection. The following code shows a partial definition of the PubSubEvent class.

Note: PubSubEvent can be found in the Prism.Events namespace which is located in the Prism.Core NuGet package.

// PubSubEvent.cs
public class PubSubEvent<TPayload> : EventBase
{
 ...
 public SubscriptionToken Subscribe(Action<TPayload> action);
 public SubscriptionToken Subscribe(Action<TPayload> action, ThreadOption threadOption);
 public SubscriptionToken Subscribe(Action<TPayload> action, bool keepSubscriberReferenceAlive)
 public SubscriptionToken Subscribe(Action<TPayload> action, ThreadOption threadOption, bool keepSubscriberReferenceAlive)

 public virtual SubscriptionToken Subscribe(Action<TPayload> action, ThreadOption threadOption, bool keepSubscriberReferenceAlive);
 public virtual SubscriptionToken Subscribe(Action<TPayload> action, ThreadOption threadOption, bool keepSubscriberReferenceAlive, Predicate<TPayload> filter);
 public virtual void Publish(TPayload payload);
 public virtual void Unsubscribe(Action<TPayload> subscriber);
 public virtual bool Contains(Action<TPayload> subscriber)
 ...
}

Creating and Publishing Events

The following sections describe how to create, publish, and subscribe to PubSubEvent using the IEventAggregator interface.

Creating an Event

The PubSubEvent<

TPayload>

 is intended to be the base class for an application’s or module’s specific events. TPayLoad is the type of the event’s payload. The payload is the argument that will be passed to subscribers when the event is published.

For example, the following code shows the TickerSymbolSelectedEvent in the Stock Trader Reference Implementation (Stock Trader RI). The payload is a string containing the company symbol. Notice how the implementation for this class is empty.

public class TickerSymbolSelectedEvent : PubSubEvent<string>{}

Note: In a composite application, the events are frequently shared between multiple modules, so they are defined in a common place. In the Stock Trader RI, this is done in the StockTraderRI.Infrastructure project.

Publishing an Event

Publishers raise an event by retrieving the event from the EventAggregator and calling the Publish method. To access the EventAggregator, you can use dependency injection by adding a parameter of type IEventAggregator to the class constructor.

The following code demonstrates publishing the TickerSymbolSelectedEvent.

this.eventAggregator.GetEvent<TickerSymbolSelectedEvent>().Publish("STOCK0");

Subscribing to Events

Subscribers can enlist with an event using one of the Subscribe method overloads available on the PubSubEvent class. There are several ways to subscribe to PubSubEvents. Use the following criteria to help determine which option best suits your needs:

	If you need to be able to update UI elements when an event is received, subscribe to receive the event on the UI thread.

	If you need to filter an event, provide a filter delegate when subscribing.

	If you have performance concerns with events, consider using strongly referenced delegates when subscribing and then manually unsubscribe from the PubSubEvent.

	If none of the preceding is applicable, use a default subscription.

The following sections describe these options.

Subscribing on the UI Thread

Frequently, subscribers will need to update UI elements in response to events. In WPF, only a UI thread can update UI elements.

By default, the subscriber receives the event on the publisher’s thread. If the publisher sends the event from the UI thread, the subscriber can update the UI. However, if the publisher’s thread is a background thread, the subscriber may be unable to directly update UI elements. In this case, the subscriber would need to schedule the updates on the UI thread using the Dispatcher class.

The PubSubEvent provided with the Prism Library can assist by allowing the subscriber to automatically receive the event on the UI thread. The subscriber indicates this during subscription, as shown in the following code example.

public void Run()
{
 ...
 this.eventAggregator.GetEvent<TickerSymbolSelectedEvent>().Subscribe(ShowNews, ThreadOption.UIThread);
);
}

public void ShowNews(string companySymbol)
{
 this.articlePresentationModel.SetTickerSymbol(companySymbol);
}

The following options are available for ThreadOption:

	PublisherThread. Use this setting to receive the event on the publishers’ thread. This is the default setting.

	BackgroundThread. Use this setting to asynchronously receive the event on a .NET Framework thread-pool thread.

	UIThread. Use this setting to receive the event on the UI thread.

Note: In order for PubSubEvents to publish to subscribers on the UI thread, the EventAggregator must initially be constructed on the UI thread.

Subscription Filtering

Subscribers may not need to handle every instance of a published event. In these cases, the subscriber can use the filter parameter. The filter parameter is of type System.Predicate<

TPayLoad>

 and is a delegate that gets executed when the event is published to determine if the payload of the published event matches a set of criteria required to have the subscriber callback invoked. If the payload does not meet the specified criteria, the subscriber callback is not executed.

Frequently, this filter is supplied as a lambda expression, as shown in the following code example.

FundAddedEvent fundAddedEvent = this.eventAggregator.GetEvent<FundAddedEvent>();

fundAddedEvent.Subscribe(FundAddedEventHandler, ThreadOption.UIThread, false,
fundOrder => fundOrder.CustomerId == this.customerId);

Note: The Subscribe method returns a subscription token of type Prism.Events.SubscriptionToken that can be used to remove a subscription to the event later. This token is particularly useful when you are using anonymous delegates or lambda expressions as the callback delegate or when you are subscribing the same event handler with different filters.

Note: It is not recommended to modify the payload object from within a callback delegate because several threads could be accessing the payload object simultaneously. You could have the payload be immutable to avoid concurrency errors.

Subscribing Using Strong References

If you are raising multiple events in a short period of time and have noticed performance concerns with them, you may need to subscribe with strong delegate references. If you do that, you will then need to manually unsubscribe from the event when disposing the subscriber.

By default, PubSubEvent maintains a weak delegate reference to the subscriber’s handler and filter on subscription. This means the reference that PubSubEvent holds on to will not prevent garbage collection of the subscriber. Using a weak delegate reference relieves the subscriber from the need to unsubscribe and allows for proper garbage collection.

However, maintaining this weak delegate reference is slower than a corresponding strong reference. For most applications, this performance will not be noticeable, but if your application publishes a large number of events in a short period of time, you may need to use strong references with PubSubEvent. If you do use strong delegate references, your subscriber should unsubscribe to enable proper garbage collection of your subscribing object when it is no longer used.

To subscribe with a strong reference, use the keepSubscriberReferenceAlive parameter on the Subscribe method, as shown in the following code example.

FundAddedEvent fundAddedEvent = eventAggregator.GetEvent<FundAddedEvent>();

bool keepSubscriberReferenceAlive = true;

fundAddedEvent.Subscribe(FundAddedEventHandler, ThreadOption.UIThread, keepSubscriberReferenceAlive, fundOrder => fundOrder.CustomerId == _customerId);

The keepSubscriberReferenceAlive parameter is of type bool:

	When set to true, the event instance keeps a strong reference to the subscriber instance, thereby not allowing it to get garbage collected. For information about how to unsubscribe, see the section Unsubscribing from an Event later in this topic.

	When set to false (the default value when this parameter omitted), the event maintains a weak reference to the subscriber instance, thereby allowing the garbage collector to dispose the subscriber instance when there are no other references to it. When the subscriber instance gets collected, the event is automatically unsubscribed.

Default Subscriptions

For a minimal or default subscription, the subscriber must provide a callback method with the appropriate signature that receives the event notification. For example, the handler for the TickerSymbolSelectedEvent requires the method to take a string parameter, as shown in the following code example.

public TrendLineViewModel(IMarketHistoryService marketHistoryService, IEventAggregator eventAggregator)
{
 ... eventAggregator.GetEvent<TickerSymbolSelectedEvent>().Subscribe(this.TickerSymbolChanged);
}

public void TickerSymbolChanged(string newTickerSymbol)
{
 MarketHistoryCollection newHistoryCollection = this.marketHistoryService.GetPriceHistory(newTickerSymbol);

 this.TickerSymbol = newTickerSymbol;
 this.HistoryCollection = newHistoryCollection;
}

Unsubscribing from an Event

If your subscriber no longer wants to receive events, you can unsubscribe by using your subscriber’s handler or you can unsubscribe by using a subscription token.

The following code example shows how to directly unsubscribe to the handler.

FundAddedEvent fundAddedEvent = this.eventAggregator.GetEvent<FundAddedEvent>();

fundAddedEvent.Subscribe(FundAddedEventHandler, ThreadOption.PublisherThread);

fundAddedEvent.Unsubscribe(FundAddedEventHandler);

The following code example shows how to unsubscribe with a subscription token. The token is supplied as a return value from the Subscribe method.

FundAddedEvent fundAddedEvent = this.eventAggregator.GetEvent<FundAddedEvent>();

subscriptionToken = fundAddedEvent.Subscribe(FundAddedEventHandler, ThreadOption.UIThread, false, fundOrder => fundOrder.CustomerId == this.customerId);

fundAddedEvent.Unsubscribe(subscriptionToken);

More Information

For more information about weak references, see Weak References [http://msdn.microsoft.com/en-us/library/ms404247.aspx] on MSDN.

_static/file.png

_static/plus.png

_static/comment.png

_images/No.png

_images/Ch7UIFig16.png
ChildUserControl

If the control is hosted, the constructor and
Loaded event code runs.

If the control i a root control, the constructor and.
Loaded event code do not run.

Designer Root Object: Windows
design-time code does not run.

ChildUserControl
design-time code runs

_images/StockTraderRI.png
+ Stock Trdes RefeenceImplemetaton

Srocai) 558
B

by Usa

sz s
sz e

o[

e [ty

ax &

=)

w o B

o
s om0 e

500
- stoas

et Lk Goes Hester

_static/ajax-loader.gif

_images/DeploymentHOLFigure13.png
Modularity with Unity QuickStart - Desktop

This desktop application demonstrates
the discovery and loading of
independent modules using Prism with
the Unity container.

ModuleB
In this example different modules are. (Clckta losc)
discovered by direct reference, directory.
sweep, or configuration. Hover over a

ModuleC
(Cicktolosc)

‘module on the right o see a tooltip
describing how it i initalzed.

The window below shows the logging

trace from the Bootstrapper dlass.
ModuleE

(Clicktoload)

Modulef
(Cicktoloae)

(DebugliLow] Logger was created successfully.
[DebugliLow] Creating module catalog.

[DebugliLow] Configuring module catalog.

[Debug](Low] Creating Unity container.

[Debug){Low] Configuring the Unity container.

{DebugliLow] Adding UnityBootstrapperExtension to container.
[DebugliLow] Configuring ServiceL ocator singleton.
{DebugliLow] Configuring region adapters.

[Debug)(Low] Configuring default region behaviors.
[DebugliLow] Registering Framevwork Exception Types.
[DebugliLow] Creating the shell

1DebuallLow] Setting the ReaionManader.

_static/down-pressed.png

_images/Ch4ModularityFig3.png
Application

CustomerModule ProductModule OrderModule
CustomersView ProductView OrderView
CustomerView ProductCatalog ShoppingCartView

CustomerRepository Productlnventory ShoppingCart

_images/Ch8NavigationFig4.png

_images/DeploymentHOLFigure14.png
Update Avail

Application update
A new version of ModularityWithUnity. Desktop is
available. Do you want to download it now?

Name: ModularityWithUnity Desktop

From: brian-e6500

ok [skp |

_images/Ch3DIFig1.png
The Common Service Locator and Implemented Adapters

L ServiceLocatorlmplBase

UnityServiceLocatorAdapter MefServiceLocatorAdapter

UnityContainer CompositionContainer

_images/pagedialogservice_03.png
Carrier & 9:51 AM
Pop-ups

DisplayAlert OK

DisplayAlert Yes/No

ActionSheet Simple

ActionSheet

Email
Twitter

Facebook

Cancel

Email

Twitter

Facebook

Cancel

ActionSheet: Send to?

Email
Twitter
Facebook

Cancel

¥ 10:48

B9.5° 10 100 E1@ GRUEDD L@ 0=0

_images/Ch6AdvMVVMFig6.png

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_images/GettingStarted_ViewSketch.png
HAello Prism

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_images/Ch12PatternsFig1.png
Host Application

Shell

View

Presentation
Model/
MVVM

Controller

B Application
Controll

Unity or MEF

Dependency
Injection

Inversion
of Control

Service
Locator

Prism Library

Fagade

Services

ul

Composition

Separated
Interface

Modularity.

Event
Aggregator

Events

Command

Commands.

_images/Ch7UIFig17.png
Faux type sample data property settings

CustomerSampleData.xaml File Properties .
23

.
Build Action DesignData D —
Copy to Output Directory Do not copy
"Custom Tool Namespace

.
File Name CustomerSampleDataxaml
Full Path C:\pri\Cider Sample Data\WPF SampleDataUsageSc:

Real type sample data property settings.

CustomersViewModelSampleData.xaml File Properties =
|3
.
Build Action DesignDataWithDesignTimeCreatableTypes
Copy to Output Directory Do not copy
‘Custom Tool Namespace
.
File Name CustomersViewModelSampleDataxaml

Full Path C:\prj\Cider Sample Data\WPF SampleDataUsageSc:

_images/DeploymentHOLFigure4.png
Where do you want to publish the application? ?

Specify the location to publish this application:

| Browse..

You may publish the application to a web site, FTP server, or file path.

Examples:
Disk path:
File share:
FTP server:
Web site:

c\deploy\myapplication

\\server\myapplication
ftpy//ftp.microsoft.com/myapplication
httpy//www.microsoft.com/myapplication

< Previous

Next >

Finish. H Cancel

_images/pagedialogservice_01.png
i

9:51 AM
Pop-ups

DisplayAlert OK

DisplayAlert Yes/No

ActionSheet Simple

Alert

You have been alerted

OK

You have been alerted

Alert
You have been alerted

95 10:48

HOIE' 10 100 E0@ ERESQQ D00 000

_images/Ch7UIFig4.png
& O SodlmiaRMubdentios
i reperes
a eteences
= 3 A
— 3 et
Aticlieablodec
+ O Newtesdeewam
@ NewFeadetietiodelcs

o

13 Mt s o SeockTradesfL Ml e

) Newedudcs
B SeTadoRbodsesPsiion
+ P scaasemcasesen

_images/pagedialogservice_04.png
ActionSheet
ActionSheet: Save Photo?

Del
Delete elete
Photo Roll
Photo Roll Photo Roll
) Email
Email Email
Cancel

Cancel Cancel

1 10:48

BS.5° 1@ 120 E1@ BHPE@AR SUU HUO

_images/NuGetPackageTree.png

_images/Ch13LibraryFig1.png
ich Client Application

WPF Application Project

Module 1| | Module 2

patterns & practices

Platform

NET Framework 4.5 (includes WPF)
and Managed Extensibility
Framework (MEF)

_images/Ch1IntroFig6.png
APPLICATION

BOOTSTRAPPER

Initiates the
bootstrapper

Performs initialization, displays
the shell, creates the module
catalog, and loads the modules

. Composition sh
el Modules
o) [z
Injects services and Ul composition Top-level window Verticalslces of
other dependencies (Region Manager which hosts content application
modules require Event Aggregator) contributed by funtionality

and module loading
services

modules

_images/Ch7UIFig9.png
Shell
Named
Location 2
Named
Location 1
Named
Location 3

Views are created from
view types in the registry

Location 1 typeof(CustomerView)
Location 2 | typeof(ProductView)
Tocation 3 typeof(OrderView)

/ Customer

Registry «———| Product

\ Order

Modules régister view
types in the registry

Registry contains
a collection of
named locations

_images/Ch2BootstrapperFig1.png
Create a LoggerFacade

Create and configure a
module catalog.

Create and configure the
container.

Configure default region
adapter mapping;

Configure default region
behaviors,

Register framework
Exception types

Create the shell.
Initialize the shell.

Initialize the modules.

_images/Ch8NavigationFig3.png

_images/Yes.png

_images/DeploymentHOLFigure5.png
Dstemofied Type

92010433PM_ File folder

_images/Ch1IntroFig3.png
Shell/
View Model

5

3 Module Catalog

|
'CORE SERVICES

:

z

B

:

:

;

_images/DeploymentHOLFigure6.png

_images/pagedialogservice_02.png
AGUUNIONTEL ONIPIS

Question?
Would you like to play a game

Question?

. Would like to pl
Would you like to play a game oulc you like to play a game

N Yes
No Yes

o
v
(S|
=
3
5]
5]
n
w
5]
w

_images/Ch4ModularityFig2.png
Register Modules

- Add modules in code
orXMAL

Discover Modules
- Discover modules in
afolder,
Confguration i,

or downloaded
sssemblies

Load Modules.

+Losd modules from
disk (WPP)

+Losd modules from
the web.

(Silveright XAP)

Initialize Modules
- Call Module nicalize)
Register types with
«Show Ul clements.
- Build navigtion structure
(meny tems, oolbars,
erc)

_images/DeploymentHOLFigure3.png
Create Test Certificate.

Enter password for new file ModularityWithUnity.Desktop_TemporaryKey.pfx

Confirm your password

_images/Ch7UIFig19.png
Properties Resources Data X. ax

_images/Ch8NavigationFig6.png
Async Navigation Request _
lavigateAsync.Request.Navigate

If the currently active view (or its view model) implements the
IConfirmNavigationRequest interface, then the ConfirmationNavigationRequest
method is called to determine whether the currently active view wishes
to confirm navigation.

Yes
v

IF the currently active view (or its view model) implements the INavigationAware
interface, then the OnNavigatedFrom method s called for each active view.

For each view of the correct type that implements INavigationAware, the
IsNavigationTarget method is called to determine whether the view (or its view
model) instance can handle the specific navigation request. If this method returns

No—» Stop

Error during= == =1
Navigation Request

If callback was provided,
nvoke
INavigateASync
NavigationRequest
callback.

Region.NavigationService
IRegionNavigationService
NavigationFailed event.

true, then the view is activated.

I
Can't Locate

Using the service locator, the Navigation service asks the registered container to
create the new view /view model.

Unity: View type must be registered with a container.

ME|

iew must be exported.

Loc:

ated

Navigation service adds the constructed Navigation service activates target
object to the region and activates it. object.

l—l—l

TF the previously active view (or its view model) implements the
IRegionMemeberLifeTime interface, then the region manager calls the
KeepAlive method to determine whether the previously active view should be
removed from the region.

‘

Region Navigation service raises the IRegionNavigationService navigated event.

!

If the target view (o its view model) implements the INavigationAware interface,
then the OnNavigatedTo method is called to allow the view to intialize itself.

If the navigation callback was specified in the navigation request, it is invoked,

passing in a NavigationResult object.

I

Region Navigation service raises the IRegionNavigationService navigated event. |

'

Navigation complete. |

!

_images/Ch9CommunicationsFig2.png
Publisher

Publisher

Event Aggregator

_images/Ch6AdvMVVMFig7.png
Name:
Address:
ciy:
Sute
Zip:

Shell View
Model

_images/DeploymentHOLFigure11.png
Publisher cannot be verified.
Are you sure you want to install this application?

Name:
ModularityWithUnity.Desktop.

From (Hover over the string below to see the full domain):
localhost

Install Don't Install

While applications from the Intemet can be useful, they can potentially harm your
computer. If you do not trust the source, do not install this software. More Information...

_images/Ch10DeployingFig1.png
Q MyClickOnceApp

MyClickOnceApp.application
B sewpore
Q ApplicationFiles

Q MyClickOnceApp_1_0_0_0

[8) MyClickonceApp.application
MyClickOnceApp.exe deploy

MyClickOnceApp.exe manifest

. SomeOtherAppDependency.dil deploy

_images/Ch7UIFig1.png
Main Region MainToolBarRegion

- + =
9 PostitionSummaryView

—

ResearchRegion

e s

_images/DeploymentHOLFigure9.png

_images/GettingStarted_SolutionExplorer.png
Solution E v B X

@ o5 a s

4[] HelloXFPrism (Portable)
b Properties
D =B References
4l ViewModels
b € MainPageViewModel.cs
4l Views
b) MainPagexaml
4) Appxaml
> 1 Appxamlcs
¥ packages.config
> [HelloXFPrism.Droid
> [& HelloXFPrism.iOS

_images/Ch1IntroFig4.png

_images/DeploymentHOLFigure7.png
s P N

‘Select destination folder for application files

4 & Local Disk (C)
4 | inetpub
b) custerr
g history
>) logs
b) temp
4 | wwwroot
b). aspnet_client
). msmq
4 | PrismDeploymentHOL
4 | Application Files
4 | ModularityWithUnity.Desktop_1_0_0_0

'} DirectoryModules

Make New Folder | ok Cancel

_images/Ch1IntroFig2.png
D
ssma
sz

sismon

s
sz

soanse

_images/Ch7UIFig2.png
RegionManager

Find adapter for control

v

Associate region
-

_images/DeploymentHOLFigure1.png
Application

Cor on: [N/A ~| Pplatiom: (/A -
Build
Build Events Publish Location
Debug Publishing Folder Location (web site, ftp server, or file path): -
s http://localhost/PrismDeploymentHOL/ “ |-
Services Installation Folder URL (f different than above): o
Settings M
Reference Paths Install Mode and Settings
Signing The application is available online only. Application Files...
Security & The application s available offline as well Prerequisiteas
Publish (launchable from Start menu)
Code Analysis Ldaiess
Options...
Publish Version
Major. Minor. Build: Revision:
1 0 0 0

Automatically increment revision with each publish

Publish Wizard. Publish Now.

_images/Ch7UIFig3.png
Main Region

_images/Ch12PatternsFig2.png
Order 1
Order 2
Order 3
Order 4

Navigation
Region

SHELL

Main Content
Region

Order View

Customer Name:
Order Date:
[CEm QWY

TcosT |

_images/DeploymentHOLFigure12.png
(100%) Installing M

Installing ModularityWithUnity.Desktop
This may take several minutes. You can use your computer to

do other tasks during the installation.

[T "eme ModularityWithUnity.Desktop

From: localhost

Preparing Application.

_images/Ch6AdvMVVMFig2.png
ShellView.xmal

<l-- Edit Region -->
sdk:TabControl
prism:RegionManager .RegionNane

©

&) save All

View A

_images/Ch7UIFig13.png
3 Solution ‘StockTraderRI" 25 projects)|
4 L Desktop
4 Lz StockTraderRl Common
+ (@ StockTraderRl.ChartControls
» (@ StockTraderRLInfrastructure
4 2 Modules
» (@ StockTraderRLModules Market
+ @ StockTraderRiModules News
» (@ StockTraderRLModules.Position
» (@ StockTraderRLModules Watch
o Unit Tests
+ @ StockTraderRl
4 Properties
(= References
» [Controls
[Resources
» [Themes
 App.contig
= Appxaml
4 EnterpriselibraryloggerAdapter.cs
2] GlobalSuppressions.cs
3 Migrated rules for StockTraderRLruleset
o # Shellxaml
@ ShellViewModel.cs
4 StockTraderRIBootstrapper.cs
) StockTraderRIBootstrapper.Desktop.cs
4 VisibilityToStarHeightConverter.Desktop.cs
» ' Silverlight

Control Resources

Module Resources

Applicaton Resources

_images/Ch6AdvMVVMFig4.png
View

Name:

Address:

Name:

Address:

Name:

w Model

DelegateCommand
“Delete”

Customer
Collection

Customer 1

Customer2

_images/Ch7UIFig12.png
soo0 10 s g sow e
Soma m wss gan soas oo

smans semns Custom Control

Data Template s 2 o

_images/Ch5MvvmFig1.png
Notifications

Data Binding
Commands
Business

Presentation

UlLogic : Logic
U code Bobind) Logic and Data

_images/Ch4ModularityFig5.png
Bootstrapper

==

®
=
(e =0

OrdersModule
Assembly

CustomerModule
Assembly

_images/Ch6AdvMVVMFig3.png
(o)

& swve Al

Name:
Address:
city:
State

View A

‘ShellViewModel ShellView

CompositeCommand
e Button
ViewModel A
Actve DelegateCommar
“Zoom A"
ViewModel 8

DelegateCommand
“Zoom 8"

ViewModel C

Delegste Command
“Zoom C*

_images/DeploymentHOLFigure2.png
Application
Configuration: (N/A] platiorm: (A
Build
Ll G5] Sign the ClickOnce manifests
Certficate:
Issued To REDMOND\ e ———
ssued By REDMOND\ e
Intended Purpose <All> P—

Expiration Date 9/1/201110:33:30 PM

Create Test Certificate...

Timestamp server URL:

(] Sign the assembly
Choose a strong name key file:

[<) change passwora

0] Delay sign only
When delay signed, th project will ot rn or be debuggable.

_images/DeploymentHOLFigure8.png
Fle it Help
5 D x

Aopscasonidonsy ooy Ousopsplcaen
Verion)

Deployment Provider.

Aopcasonttantst Aoptcton o adaro Wy Dvsio. 100, OWodsr Wy Dok s i Sant)

Folae P
st Bprosson norocions o
Mcroson racces Prsm i

Microso Pracicos Psm Uniytensens 1
Micros Pracics SanvcLocaiondi
Microst Pracicos Unty.di
Maduortyiunty Deskiop

| ModulariyihUnty Deskiop Moo o

| ModulriyinUniy Deskiop ModeC o
Mooty ModeTracong o
System Vindows nerocivty i
MaduaryWanny Desiop e con
Hoduor